Kashif Ishfaq, Muhammad Sana, M Saravana Kumar, Inzamam Ahmed, Che-Hua Yang
{"title":"优化电蚀放电参数,降低钛基高温合金电火花加工中电极磨损和几何尺寸偏差","authors":"Kashif Ishfaq, Muhammad Sana, M Saravana Kumar, Inzamam Ahmed, Che-Hua Yang","doi":"10.1177/09544054231205333","DOIUrl":null,"url":null,"abstract":"The low thermal conductivity, the small magnitude of modulus of elasticity, and the high chemical reactivity of Ti-6Al-4V make it difficult to machine this material using traditional processes. The intended requirements for the applications of the said alloy, like in biomedical and aerospace, further complicate its processing. Thereof, electric discharge machining (EDM) opted for this alloy. However, intrinsic issues of EDM, that is, electrode wear rate (EWR) and dimensional overcuts, restricted its utilization. Therefore, the potential of three powder-based additives and dielectric fluids against different electrode materials has been deeply envisaged to address the abovementioned issues. Because the choice of best dielectric has a direct bearing on heat input to the electrode which influences the melting/vaporization of the tool wear of the electrode. It is worth mentioning that these concerns have not been discussed so far in such a broad spectrum. Taguchi’s experimental design is used for experimentation. The results show that transformer oil performance is best rated compared to other dielectrics. Overall, the reduction in tool wear rate and overcut obtained with transformer oil is 21.3% and 21.4%, respectively, in contrast to the other dielectrics. The electrode of Cu outperforms for yielding the smaller value of overcut and tool wear rate. In the case of micro-additives, alumina has proved its potential for lowering the electrode wear rate. Deep and wide craters of a depth of 150 µm have been observed by using the brass electrode in kerosene oil, whereas the small and shallow craters of 38 µm depth have been encountered using the Cu electrode in the presence of transformer oil.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"39 22","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the contributing electro-erosive discharge parameters for reducing the electrode wear and geometric dimensional deviation in EDM of Ti-based superalloy\",\"authors\":\"Kashif Ishfaq, Muhammad Sana, M Saravana Kumar, Inzamam Ahmed, Che-Hua Yang\",\"doi\":\"10.1177/09544054231205333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low thermal conductivity, the small magnitude of modulus of elasticity, and the high chemical reactivity of Ti-6Al-4V make it difficult to machine this material using traditional processes. The intended requirements for the applications of the said alloy, like in biomedical and aerospace, further complicate its processing. Thereof, electric discharge machining (EDM) opted for this alloy. However, intrinsic issues of EDM, that is, electrode wear rate (EWR) and dimensional overcuts, restricted its utilization. Therefore, the potential of three powder-based additives and dielectric fluids against different electrode materials has been deeply envisaged to address the abovementioned issues. Because the choice of best dielectric has a direct bearing on heat input to the electrode which influences the melting/vaporization of the tool wear of the electrode. It is worth mentioning that these concerns have not been discussed so far in such a broad spectrum. Taguchi’s experimental design is used for experimentation. The results show that transformer oil performance is best rated compared to other dielectrics. Overall, the reduction in tool wear rate and overcut obtained with transformer oil is 21.3% and 21.4%, respectively, in contrast to the other dielectrics. The electrode of Cu outperforms for yielding the smaller value of overcut and tool wear rate. In the case of micro-additives, alumina has proved its potential for lowering the electrode wear rate. Deep and wide craters of a depth of 150 µm have been observed by using the brass electrode in kerosene oil, whereas the small and shallow craters of 38 µm depth have been encountered using the Cu electrode in the presence of transformer oil.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":\"39 22\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231205333\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231205333","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Optimizing the contributing electro-erosive discharge parameters for reducing the electrode wear and geometric dimensional deviation in EDM of Ti-based superalloy
The low thermal conductivity, the small magnitude of modulus of elasticity, and the high chemical reactivity of Ti-6Al-4V make it difficult to machine this material using traditional processes. The intended requirements for the applications of the said alloy, like in biomedical and aerospace, further complicate its processing. Thereof, electric discharge machining (EDM) opted for this alloy. However, intrinsic issues of EDM, that is, electrode wear rate (EWR) and dimensional overcuts, restricted its utilization. Therefore, the potential of three powder-based additives and dielectric fluids against different electrode materials has been deeply envisaged to address the abovementioned issues. Because the choice of best dielectric has a direct bearing on heat input to the electrode which influences the melting/vaporization of the tool wear of the electrode. It is worth mentioning that these concerns have not been discussed so far in such a broad spectrum. Taguchi’s experimental design is used for experimentation. The results show that transformer oil performance is best rated compared to other dielectrics. Overall, the reduction in tool wear rate and overcut obtained with transformer oil is 21.3% and 21.4%, respectively, in contrast to the other dielectrics. The electrode of Cu outperforms for yielding the smaller value of overcut and tool wear rate. In the case of micro-additives, alumina has proved its potential for lowering the electrode wear rate. Deep and wide craters of a depth of 150 µm have been observed by using the brass electrode in kerosene oil, whereas the small and shallow craters of 38 µm depth have been encountered using the Cu electrode in the presence of transformer oil.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.