{"title":"尼罗盆地源头复杂地形的水文模拟与水平衡评价——以埃塞俄比亚北部Ghba河为例","authors":"Mehari Gebreyohannes Hiben, Admasu Gebeyehu Awoke, Abraha Adugna Ashenafi","doi":"10.54392/irjmt2363","DOIUrl":null,"url":null,"abstract":"Water resource evaluation, management, and conservation at the local, national, and international levels depend on an accurate understanding of the hydrological processes. In data-poor environments and topographically complicated areas like the Ghba subbasin in the headwaters of the Nile River, the function of hydrological models is crucial. The primary goal of this study is to use the WEAP model to simulate the hydrology of the Ghba basin. This is because recent hydrological behaviour has changed significantly and resulted in a serious water deficit. The minimal satisfactory performance limit for the monthly stream flow variable was strongly attained by the multi-variable calibration scenario (R2 = 0.82, NSE = 0.82, IA= 0.80 RSR = 0.87 and PBIAS = 9 % for calibration scenario; and R2 = 0.78, NSE = 0.81, IA= 0.70 RSR = 0.80 and PBIAS = 11.5 % for validation scenario). Evapotranspiration makes up 63.4% of the water balance, according to the model simulation, while surface runoff, interflow, baseflow and groundwater recharge accounting for 11.1 %, 11.8%, 5.4% and 8.3 %, respectively. The simulated average annual streamflow at the subbasin outlet is 16.33 m3/s. The simulated monthly minimum flow occurs in January with an average flow of 1.78 m3/s and a coefficient of dispersion of 0.45. Maximum flows occur in July and August, with an average flow of 53.57 m3/s and a coefficient of dispersion of 0.19. The main rainy season was shown to have a larger spatial distribution of simulated runoff, and the average annual recharge value is 53.5 mm. The study's conclusions indicated that both surface water harvesting and groundwater extraction might be used for reliable water distribution to the subbasin's continuously increasing sectoral water demand.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"31 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrological Modeling and Evaluation of Water Balance Over the Complex Topography of Nile Basin Headwaters: The Case of Ghba River, Northern Ethiopia\",\"authors\":\"Mehari Gebreyohannes Hiben, Admasu Gebeyehu Awoke, Abraha Adugna Ashenafi\",\"doi\":\"10.54392/irjmt2363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water resource evaluation, management, and conservation at the local, national, and international levels depend on an accurate understanding of the hydrological processes. In data-poor environments and topographically complicated areas like the Ghba subbasin in the headwaters of the Nile River, the function of hydrological models is crucial. The primary goal of this study is to use the WEAP model to simulate the hydrology of the Ghba basin. This is because recent hydrological behaviour has changed significantly and resulted in a serious water deficit. The minimal satisfactory performance limit for the monthly stream flow variable was strongly attained by the multi-variable calibration scenario (R2 = 0.82, NSE = 0.82, IA= 0.80 RSR = 0.87 and PBIAS = 9 % for calibration scenario; and R2 = 0.78, NSE = 0.81, IA= 0.70 RSR = 0.80 and PBIAS = 11.5 % for validation scenario). Evapotranspiration makes up 63.4% of the water balance, according to the model simulation, while surface runoff, interflow, baseflow and groundwater recharge accounting for 11.1 %, 11.8%, 5.4% and 8.3 %, respectively. The simulated average annual streamflow at the subbasin outlet is 16.33 m3/s. The simulated monthly minimum flow occurs in January with an average flow of 1.78 m3/s and a coefficient of dispersion of 0.45. Maximum flows occur in July and August, with an average flow of 53.57 m3/s and a coefficient of dispersion of 0.19. The main rainy season was shown to have a larger spatial distribution of simulated runoff, and the average annual recharge value is 53.5 mm. The study's conclusions indicated that both surface water harvesting and groundwater extraction might be used for reliable water distribution to the subbasin's continuously increasing sectoral water demand.\",\"PeriodicalId\":14412,\"journal\":{\"name\":\"International Research Journal of Multidisciplinary Technovation\",\"volume\":\"31 18\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Multidisciplinary Technovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54392/irjmt2363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrological Modeling and Evaluation of Water Balance Over the Complex Topography of Nile Basin Headwaters: The Case of Ghba River, Northern Ethiopia
Water resource evaluation, management, and conservation at the local, national, and international levels depend on an accurate understanding of the hydrological processes. In data-poor environments and topographically complicated areas like the Ghba subbasin in the headwaters of the Nile River, the function of hydrological models is crucial. The primary goal of this study is to use the WEAP model to simulate the hydrology of the Ghba basin. This is because recent hydrological behaviour has changed significantly and resulted in a serious water deficit. The minimal satisfactory performance limit for the monthly stream flow variable was strongly attained by the multi-variable calibration scenario (R2 = 0.82, NSE = 0.82, IA= 0.80 RSR = 0.87 and PBIAS = 9 % for calibration scenario; and R2 = 0.78, NSE = 0.81, IA= 0.70 RSR = 0.80 and PBIAS = 11.5 % for validation scenario). Evapotranspiration makes up 63.4% of the water balance, according to the model simulation, while surface runoff, interflow, baseflow and groundwater recharge accounting for 11.1 %, 11.8%, 5.4% and 8.3 %, respectively. The simulated average annual streamflow at the subbasin outlet is 16.33 m3/s. The simulated monthly minimum flow occurs in January with an average flow of 1.78 m3/s and a coefficient of dispersion of 0.45. Maximum flows occur in July and August, with an average flow of 53.57 m3/s and a coefficient of dispersion of 0.19. The main rainy season was shown to have a larger spatial distribution of simulated runoff, and the average annual recharge value is 53.5 mm. The study's conclusions indicated that both surface water harvesting and groundwater extraction might be used for reliable water distribution to the subbasin's continuously increasing sectoral water demand.