Sofia Ramzan, Muhammad Uzair Awan, Silvestru Sever Dragomir, Bandar Bin-Mohsin, Muhammad Aslam Noor
{"title":"一些新的分数阶积分不等式的分析与应用","authors":"Sofia Ramzan, Muhammad Uzair Awan, Silvestru Sever Dragomir, Bandar Bin-Mohsin, Muhammad Aslam Noor","doi":"10.3390/fractalfract7110797","DOIUrl":null,"url":null,"abstract":"This paper presents a novel parameterized fractional integral identity. By using this auxiliary result and the s-convexity property of the mapping, a series of fractional variants of certain classical inequalities, including Simpson’s, midpoint, and trapezoidal-type inequalities, have been derived. Additionally, some applications of our main outcomes to special means of real numbers have been explored. Moreover, we have derived a new generic numerical scheme for solving non-linear equations, demonstrating an application of our main results in numerical analysis.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"5 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Applications of Some New Fractional Integral Inequalities\",\"authors\":\"Sofia Ramzan, Muhammad Uzair Awan, Silvestru Sever Dragomir, Bandar Bin-Mohsin, Muhammad Aslam Noor\",\"doi\":\"10.3390/fractalfract7110797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel parameterized fractional integral identity. By using this auxiliary result and the s-convexity property of the mapping, a series of fractional variants of certain classical inequalities, including Simpson’s, midpoint, and trapezoidal-type inequalities, have been derived. Additionally, some applications of our main outcomes to special means of real numbers have been explored. Moreover, we have derived a new generic numerical scheme for solving non-linear equations, demonstrating an application of our main results in numerical analysis.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7110797\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110797","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Analysis and Applications of Some New Fractional Integral Inequalities
This paper presents a novel parameterized fractional integral identity. By using this auxiliary result and the s-convexity property of the mapping, a series of fractional variants of certain classical inequalities, including Simpson’s, midpoint, and trapezoidal-type inequalities, have been derived. Additionally, some applications of our main outcomes to special means of real numbers have been explored. Moreover, we have derived a new generic numerical scheme for solving non-linear equations, demonstrating an application of our main results in numerical analysis.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.