飓风频率预测变化对美国飓风和风暴潮损害的影响

IF 2.6 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Stephen Jewson
{"title":"飓风频率预测变化对美国飓风和风暴潮损害的影响","authors":"Stephen Jewson","doi":"10.1175/jamc-d-23-0087.1","DOIUrl":null,"url":null,"abstract":"Abstract We use a simple risk model for U.S. hurricane wind and surge economic damage to investigate the impact of projected changes in the frequencies of hurricanes of different intensities due to climate change. For average annual damage we find that changes in the frequency of category 4 storms dominate. For distributions of annual damage we find that changes in the frequency of category 4 storms again dominate for all except the shortest return periods. Sensitivity tests show that accounting for landfall, uncertainties and correlations leads to increases in damage estimates. When we propagate the distributions of uncertain frequency changes to give a best estimate of the changes in damage, the changes are moderate. When we pick individual scenarios from within the distributions of frequency changes, we find a significant probability of much larger changes in damage. The inputs on which our study depends are highly uncertain, and our methods are approximate, leading to high levels of uncertainty in our results. Also, the damage changes we consider are only part of the total possible change in hurricane damage due to climate change. Total damage change estimates would also need to include changes due to other factors, including possible changes in genesis, tracks, size, forward-speed, sea-level rise, rainfall and exposure. Nevertheless, we believe that our results give important new insights into U.S. hurricane risk under climate change.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"32 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Projected Changes in Hurricane Frequencies on U.S. Hurricane Wind and Surge Damage\",\"authors\":\"Stephen Jewson\",\"doi\":\"10.1175/jamc-d-23-0087.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We use a simple risk model for U.S. hurricane wind and surge economic damage to investigate the impact of projected changes in the frequencies of hurricanes of different intensities due to climate change. For average annual damage we find that changes in the frequency of category 4 storms dominate. For distributions of annual damage we find that changes in the frequency of category 4 storms again dominate for all except the shortest return periods. Sensitivity tests show that accounting for landfall, uncertainties and correlations leads to increases in damage estimates. When we propagate the distributions of uncertain frequency changes to give a best estimate of the changes in damage, the changes are moderate. When we pick individual scenarios from within the distributions of frequency changes, we find a significant probability of much larger changes in damage. The inputs on which our study depends are highly uncertain, and our methods are approximate, leading to high levels of uncertainty in our results. Also, the damage changes we consider are only part of the total possible change in hurricane damage due to climate change. Total damage change estimates would also need to include changes due to other factors, including possible changes in genesis, tracks, size, forward-speed, sea-level rise, rainfall and exposure. Nevertheless, we believe that our results give important new insights into U.S. hurricane risk under climate change.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-23-0087.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0087.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文利用一个简单的美国飓风风暴潮经济损失风险模型,研究了气候变化对不同强度飓风频率的预测变化的影响。对于年平均损失,我们发现4级风暴频率的变化占主导地位。对于年损失的分布,我们发现4类风暴的频率变化再次占主导地位,除了最短的回归期。敏感性试验表明,考虑到登陆、不确定性和相关性会导致损失估计数的增加。当我们传播不确定频率变化的分布以给出对损伤变化的最佳估计时,变化是适度的。当我们从频率变化的分布中选择单个场景时,我们发现损害变化的显著概率要大得多。我们的研究所依赖的输入是高度不确定的,我们的方法是近似的,导致我们的结果高度不确定。此外,我们考虑的损害变化只是气候变化造成的飓风损害的全部可能变化的一部分。总损失变化估计还需要包括其他因素造成的变化,包括起源、路径、大小、前进速度、海平面上升、降雨和暴露的可能变化。尽管如此,我们相信我们的结果为气候变化下的美国飓风风险提供了重要的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Projected Changes in Hurricane Frequencies on U.S. Hurricane Wind and Surge Damage
Abstract We use a simple risk model for U.S. hurricane wind and surge economic damage to investigate the impact of projected changes in the frequencies of hurricanes of different intensities due to climate change. For average annual damage we find that changes in the frequency of category 4 storms dominate. For distributions of annual damage we find that changes in the frequency of category 4 storms again dominate for all except the shortest return periods. Sensitivity tests show that accounting for landfall, uncertainties and correlations leads to increases in damage estimates. When we propagate the distributions of uncertain frequency changes to give a best estimate of the changes in damage, the changes are moderate. When we pick individual scenarios from within the distributions of frequency changes, we find a significant probability of much larger changes in damage. The inputs on which our study depends are highly uncertain, and our methods are approximate, leading to high levels of uncertainty in our results. Also, the damage changes we consider are only part of the total possible change in hurricane damage due to climate change. Total damage change estimates would also need to include changes due to other factors, including possible changes in genesis, tracks, size, forward-speed, sea-level rise, rainfall and exposure. Nevertheless, we believe that our results give important new insights into U.S. hurricane risk under climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Meteorology and Climatology
Journal of Applied Meteorology and Climatology 地学-气象与大气科学
CiteScore
5.10
自引率
6.70%
发文量
97
审稿时长
3 months
期刊介绍: The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信