{"title":"无限型曲面是非hopfian曲面","authors":"Sumanta Das, Siddhartha Gadgil","doi":"10.5802/crmath.504","DOIUrl":null,"url":null,"abstract":"We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface Σ is of finite-type if and only if every proper map f:Σ→Σ of degree one is homotopic to a homeomorphism.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfaces of infinite-type are non-Hopfian\",\"authors\":\"Sumanta Das, Siddhartha Gadgil\",\"doi\":\"10.5802/crmath.504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface Σ is of finite-type if and only if every proper map f:Σ→Σ of degree one is homotopic to a homeomorphism.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface Σ is of finite-type if and only if every proper map f:Σ→Σ of degree one is homotopic to a homeomorphism.