一种带有DFCEA的改进磁滞电流控制器,用于PV-SHAPF的电流谐波抑制

IF 1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
Johnnie Hepziba R, Balaji G
{"title":"一种带有DFCEA的改进磁滞电流控制器,用于PV-SHAPF的电流谐波抑制","authors":"Johnnie Hepziba R, Balaji G","doi":"10.1080/02533839.2023.2274103","DOIUrl":null,"url":null,"abstract":"ABSTRACT A Modified Hysteresis Current Controller (MHCC) with Dual Fundamental Component Extraction Algorithm (DFCEA) is presented in this paper. Its purpose is to improve the current harmonics mitigation performance of a three-level T-type inverter-based Shunt Active Power Filter (SHAPF) while operating under non-sinusoidal voltage conditions. The DFCEA is responsible for isolating the fundamental voltage and current components that are necessary for synchronizing each phase and producing the reference current. The existing dual fundamental component extraction technique is updated in order to create the optimized reference currents that are required by the proposed PV-linked T-Type inverter-based Shunt Active Power Filter (PV-SHAPF). This was done in order to meet the requirements of the PV-SHAPF. It is also anticipated that it is excellent at extracting reference currents even under situations of voltage that are not optimum. To maintain the dc-link capacitor voltage at 600 V, a control algorithm of the dc-link capacitor known as the ‘DC link voltage controller’ is used. Both control algorithms are tested in a three-phase T-Type inverter-based PV-SHAPF by simulating them in a MATLAB/Simulink environment. The performance of the MHCC-DFCEA that was designed to mitigate current harmonics was proven by the findings that were gathered.","PeriodicalId":17313,"journal":{"name":"Journal of the Chinese Institute of Engineers","volume":"11 2","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified hysteresis current controller with DFCEA for current harmonic mitigation using PV-SHAPF\",\"authors\":\"Johnnie Hepziba R, Balaji G\",\"doi\":\"10.1080/02533839.2023.2274103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A Modified Hysteresis Current Controller (MHCC) with Dual Fundamental Component Extraction Algorithm (DFCEA) is presented in this paper. Its purpose is to improve the current harmonics mitigation performance of a three-level T-type inverter-based Shunt Active Power Filter (SHAPF) while operating under non-sinusoidal voltage conditions. The DFCEA is responsible for isolating the fundamental voltage and current components that are necessary for synchronizing each phase and producing the reference current. The existing dual fundamental component extraction technique is updated in order to create the optimized reference currents that are required by the proposed PV-linked T-Type inverter-based Shunt Active Power Filter (PV-SHAPF). This was done in order to meet the requirements of the PV-SHAPF. It is also anticipated that it is excellent at extracting reference currents even under situations of voltage that are not optimum. To maintain the dc-link capacitor voltage at 600 V, a control algorithm of the dc-link capacitor known as the ‘DC link voltage controller’ is used. Both control algorithms are tested in a three-phase T-Type inverter-based PV-SHAPF by simulating them in a MATLAB/Simulink environment. The performance of the MHCC-DFCEA that was designed to mitigate current harmonics was proven by the findings that were gathered.\",\"PeriodicalId\":17313,\"journal\":{\"name\":\"Journal of the Chinese Institute of Engineers\",\"volume\":\"11 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Chinese Institute of Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02533839.2023.2274103\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Chinese Institute of Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02533839.2023.2274103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified hysteresis current controller with DFCEA for current harmonic mitigation using PV-SHAPF
ABSTRACT A Modified Hysteresis Current Controller (MHCC) with Dual Fundamental Component Extraction Algorithm (DFCEA) is presented in this paper. Its purpose is to improve the current harmonics mitigation performance of a three-level T-type inverter-based Shunt Active Power Filter (SHAPF) while operating under non-sinusoidal voltage conditions. The DFCEA is responsible for isolating the fundamental voltage and current components that are necessary for synchronizing each phase and producing the reference current. The existing dual fundamental component extraction technique is updated in order to create the optimized reference currents that are required by the proposed PV-linked T-Type inverter-based Shunt Active Power Filter (PV-SHAPF). This was done in order to meet the requirements of the PV-SHAPF. It is also anticipated that it is excellent at extracting reference currents even under situations of voltage that are not optimum. To maintain the dc-link capacitor voltage at 600 V, a control algorithm of the dc-link capacitor known as the ‘DC link voltage controller’ is used. Both control algorithms are tested in a three-phase T-Type inverter-based PV-SHAPF by simulating them in a MATLAB/Simulink environment. The performance of the MHCC-DFCEA that was designed to mitigate current harmonics was proven by the findings that were gathered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Chinese Institute of Engineers
Journal of the Chinese Institute of Engineers 工程技术-工程:综合
CiteScore
2.30
自引率
9.10%
发文量
57
审稿时长
6.8 months
期刊介绍: Encompassing a wide range of engineering disciplines and industrial applications, JCIE includes the following topics: 1.Chemical engineering 2.Civil engineering 3.Computer engineering 4.Electrical engineering 5.Electronics 6.Mechanical engineering and fields related to the above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信