船舶概念设计的机会约束优化公式:一种元启发式算法的比较

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jakub Kudela
{"title":"船舶概念设计的机会约束优化公式:一种元启发式算法的比较","authors":"Jakub Kudela","doi":"10.3390/computers12110225","DOIUrl":null,"url":null,"abstract":"This paper presents a new chance-constrained optimization (CCO) formulation for the bulk carrier conceptual design. The CCO problem is modeled through the scenario design approach. We conducted extensive numerical experiments comparing the convergence of both canonical and state-of-the-art metaheuristic algorithms on the original and CCO formulations and showed that the CCO formulation is substantially more difficult to solve. The two best-performing methods were both found to be differential evolution-based algorithms. We then provide an analysis of the resulting solutions in terms of the dependence of the distribution functions of the unit transportation costs and annual cargo capacity of the ship design on the probability of violating the chance constraints.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"43 10","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chance-Constrained Optimization Formulation for Ship Conceptual Design: A Comparison of Metaheuristic Algorithms\",\"authors\":\"Jakub Kudela\",\"doi\":\"10.3390/computers12110225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new chance-constrained optimization (CCO) formulation for the bulk carrier conceptual design. The CCO problem is modeled through the scenario design approach. We conducted extensive numerical experiments comparing the convergence of both canonical and state-of-the-art metaheuristic algorithms on the original and CCO formulations and showed that the CCO formulation is substantially more difficult to solve. The two best-performing methods were both found to be differential evolution-based algorithms. We then provide an analysis of the resulting solutions in terms of the dependence of the distribution functions of the unit transportation costs and annual cargo capacity of the ship design on the probability of violating the chance constraints.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"43 10\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12110225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的散货船概念设计机会约束优化(CCO)公式。通过场景设计方法对CCO问题进行建模。我们进行了大量的数值实验,比较了经典和最先进的元启发式算法在原始和CCO公式上的收敛性,并表明CCO公式实际上更难求解。两种表现最好的方法都是基于差分进化的算法。然后,根据船舶设计的单位运输成本和年载货能力的分布函数对违反机会约束的概率的依赖关系,对所得解进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chance-Constrained Optimization Formulation for Ship Conceptual Design: A Comparison of Metaheuristic Algorithms
This paper presents a new chance-constrained optimization (CCO) formulation for the bulk carrier conceptual design. The CCO problem is modeled through the scenario design approach. We conducted extensive numerical experiments comparing the convergence of both canonical and state-of-the-art metaheuristic algorithms on the original and CCO formulations and showed that the CCO formulation is substantially more difficult to solve. The two best-performing methods were both found to be differential evolution-based algorithms. We then provide an analysis of the resulting solutions in terms of the dependence of the distribution functions of the unit transportation costs and annual cargo capacity of the ship design on the probability of violating the chance constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信