基于LSTM(长短期记忆)的情绪分析在股价预测中的应用

Muhammad Fajrul Aslim, Gerry Firmansyah, Budi Tjahjono, Habibullah Akbar, Agung Mulyo Widodo
{"title":"基于LSTM(长短期记忆)的情绪分析在股价预测中的应用","authors":"Muhammad Fajrul Aslim, Gerry Firmansyah, Budi Tjahjono, Habibullah Akbar, Agung Mulyo Widodo","doi":"10.59888/ajosh.v1i12.141","DOIUrl":null,"url":null,"abstract":"This study aims to utilize sentiment analysis in predicting stock price movements. Sentiment analysis can provide information to investors to understand market sentiment. This study uses a text-based approach by pre-processing data, constructing a sentiment analysis model and evaluating model performance. The collected data is analyzed to identify the text's positive, negative, or neutral sentiments. The approach used in scoring sentiment analysis is the Text blob approach and the Lexicon approach. Differences in the results of the accuracy of the two Sentiment Analysis approaches with the LSTM model have an influence on the prediction results with a better increase in accuracy using the Lexicon Sentiment Analysis approach. Then the LSTM model is implemented to classify texts into the desired sentiment categories. The results of this study are insight into the use of sentiment analysis in predicting stock price movements. The implemented sentiment analysis model can be a useful predictive tool for investors and stock practitioners in making investment decisions.","PeriodicalId":92175,"journal":{"name":"Asian journal of research in social sciences and humanities","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of LSTM (Long Short Term Memory) Based Sentiment Analysis for Stock Price Prediction\",\"authors\":\"Muhammad Fajrul Aslim, Gerry Firmansyah, Budi Tjahjono, Habibullah Akbar, Agung Mulyo Widodo\",\"doi\":\"10.59888/ajosh.v1i12.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to utilize sentiment analysis in predicting stock price movements. Sentiment analysis can provide information to investors to understand market sentiment. This study uses a text-based approach by pre-processing data, constructing a sentiment analysis model and evaluating model performance. The collected data is analyzed to identify the text's positive, negative, or neutral sentiments. The approach used in scoring sentiment analysis is the Text blob approach and the Lexicon approach. Differences in the results of the accuracy of the two Sentiment Analysis approaches with the LSTM model have an influence on the prediction results with a better increase in accuracy using the Lexicon Sentiment Analysis approach. Then the LSTM model is implemented to classify texts into the desired sentiment categories. The results of this study are insight into the use of sentiment analysis in predicting stock price movements. The implemented sentiment analysis model can be a useful predictive tool for investors and stock practitioners in making investment decisions.\",\"PeriodicalId\":92175,\"journal\":{\"name\":\"Asian journal of research in social sciences and humanities\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian journal of research in social sciences and humanities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59888/ajosh.v1i12.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian journal of research in social sciences and humanities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59888/ajosh.v1i12.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用情绪分析预测股价走势。情绪分析可以为投资者了解市场情绪提供信息。本研究采用基于文本的方法,对数据进行预处理,构建情感分析模型,并对模型性能进行评价。对收集到的数据进行分析,以确定文本的积极、消极或中性情绪。情感分析中使用的评分方法是Text blob方法和Lexicon方法。使用LSTM模型的两种情感分析方法的预测结果的准确性差异影响了使用Lexicon情感分析方法的预测结果的准确性提高。然后实现LSTM模型将文本分类到期望的情感类别中。本研究的结果是洞察使用情绪分析预测股价走势。所实现的情绪分析模型可以作为投资者和股票从业者进行投资决策的有用预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilization of LSTM (Long Short Term Memory) Based Sentiment Analysis for Stock Price Prediction
This study aims to utilize sentiment analysis in predicting stock price movements. Sentiment analysis can provide information to investors to understand market sentiment. This study uses a text-based approach by pre-processing data, constructing a sentiment analysis model and evaluating model performance. The collected data is analyzed to identify the text's positive, negative, or neutral sentiments. The approach used in scoring sentiment analysis is the Text blob approach and the Lexicon approach. Differences in the results of the accuracy of the two Sentiment Analysis approaches with the LSTM model have an influence on the prediction results with a better increase in accuracy using the Lexicon Sentiment Analysis approach. Then the LSTM model is implemented to classify texts into the desired sentiment categories. The results of this study are insight into the use of sentiment analysis in predicting stock price movements. The implemented sentiment analysis model can be a useful predictive tool for investors and stock practitioners in making investment decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信