关于$q$-Durrmeyer算子的特征结构

IF 0.8 4区 数学 Q2 MATHEMATICS
ÖVGÜ GÜREL YILMAZ
{"title":"关于$q$-Durrmeyer算子的特征结构","authors":"ÖVGÜ GÜREL YILMAZ","doi":"10.55730/1300-0098.3454","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to establish the eigenvalues and the eigenfunctions of both the $q$-Durrmeyer operators $D_{n,q}$ and the limit $q$-Durrmeyer operators $D_{\\infty,q}$ introduced by V. Gupta in the case 0<$q$<1. All moments for $D_{n,q}$ and $D_{\\infty,q}$ are provided. The coefficients for the eigenfunctions of the operators are explicitly derived and the eigenfunctions of these operators are illustrated by graphical examples.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the eigenstructure of the $q$-Durrmeyer operators\",\"authors\":\"ÖVGÜ GÜREL YILMAZ\",\"doi\":\"10.55730/1300-0098.3454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to establish the eigenvalues and the eigenfunctions of both the $q$-Durrmeyer operators $D_{n,q}$ and the limit $q$-Durrmeyer operators $D_{\\\\infty,q}$ introduced by V. Gupta in the case 0<$q$<1. All moments for $D_{n,q}$ and $D_{\\\\infty,q}$ are provided. The coefficients for the eigenfunctions of the operators are explicitly derived and the eigenfunctions of these operators are illustrated by graphical examples.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是建立在0< $q$ <1的情况下$q$ -Durrmeyer算子$D_{n,q}$和V. Gupta引入的极限$q$ -Durrmeyer算子$D_{\infty,q}$的特征值和特征函数。提供了$D_{n,q}$和$D_{\infty,q}$的所有力矩。明确地推导了这些算子的本征函数的系数,并用图形举例说明了这些算子的本征函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the eigenstructure of the $q$-Durrmeyer operators
The purpose of this paper is to establish the eigenvalues and the eigenfunctions of both the $q$-Durrmeyer operators $D_{n,q}$ and the limit $q$-Durrmeyer operators $D_{\infty,q}$ introduced by V. Gupta in the case 0<$q$<1. All moments for $D_{n,q}$ and $D_{\infty,q}$ are provided. The coefficients for the eigenfunctions of the operators are explicitly derived and the eigenfunctions of these operators are illustrated by graphical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信