具有临界非线性的分数阶半线性Neumann问题

IF 0.8 4区 数学 Q2 MATHEMATICS
ZHENFENG JIN, HONGRUI SUN
{"title":"具有临界非线性的分数阶半线性Neumann问题","authors":"ZHENFENG JIN, HONGRUI SUN","doi":"10.55730/1300-0098.3458","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the following critical fractional semilinear Neumann problem \\begin{equation*} \\begin{cases} (-\\Delta)^{1/2}u+\\lambda u=u^{\\frac{n+1}{n-1}},~u>0\\quad&\\, \\mathrm{in}\\ \\Omega,\\\\ \\partial_\\nu{u}=0 &\\mathrm{on}\\ \\partial\\Omega, \\end{cases} \\end{equation*} where $\\Omega\\subset\\mathbb{R}^n~(n\\geq5)$ is a smooth bounded domain, $\\lambda>0$ and $\\nu$ is the outward unit normal to $\\partial\\Omega$. We prove that there exists a constant $\\lambda_0>0$ such that the above problem admits a minimal energy solution for $\\lambda<\\lambda_0$. Moreover, if $\\Omega$ is convex, we show that this solution is constant for sufficiently small $\\lambda$.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional semilinear Neumann problem with critical nonlinearity\",\"authors\":\"ZHENFENG JIN, HONGRUI SUN\",\"doi\":\"10.55730/1300-0098.3458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the following critical fractional semilinear Neumann problem \\\\begin{equation*} \\\\begin{cases} (-\\\\Delta)^{1/2}u+\\\\lambda u=u^{\\\\frac{n+1}{n-1}},~u>0\\\\quad&\\\\, \\\\mathrm{in}\\\\ \\\\Omega,\\\\\\\\ \\\\partial_\\\\nu{u}=0 &\\\\mathrm{on}\\\\ \\\\partial\\\\Omega, \\\\end{cases} \\\\end{equation*} where $\\\\Omega\\\\subset\\\\mathbb{R}^n~(n\\\\geq5)$ is a smooth bounded domain, $\\\\lambda>0$ and $\\\\nu$ is the outward unit normal to $\\\\partial\\\\Omega$. We prove that there exists a constant $\\\\lambda_0>0$ such that the above problem admits a minimal energy solution for $\\\\lambda<\\\\lambda_0$. Moreover, if $\\\\Omega$ is convex, we show that this solution is constant for sufficiently small $\\\\lambda$.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3458\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3458","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑以下临界分数阶半线性Neumann问题\begin{equation*} \begin{cases} (-\Delta)^{1/2}u+\lambda u=u^{\frac{n+1}{n-1}},~u>0\quad&\, \mathrm{in}\ \Omega,\\ \partial_\nu{u}=0 &\mathrm{on}\ \partial\Omega, \end{cases} \end{equation*},其中$\Omega\subset\mathbb{R}^n~(n\geq5)$是光滑有界域,$\lambda>0$和$\nu$是向$\partial\Omega$法向的外单位。我们证明了存在一个常数$\lambda_0>0$,使得上述问题允许$\lambda<\lambda_0$的最小能量解。此外,如果$\Omega$是凸的,我们证明该解对于足够小的$\lambda$是常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional semilinear Neumann problem with critical nonlinearity
In this paper, we consider the following critical fractional semilinear Neumann problem \begin{equation*} \begin{cases} (-\Delta)^{1/2}u+\lambda u=u^{\frac{n+1}{n-1}},~u>0\quad&\, \mathrm{in}\ \Omega,\\ \partial_\nu{u}=0 &\mathrm{on}\ \partial\Omega, \end{cases} \end{equation*} where $\Omega\subset\mathbb{R}^n~(n\geq5)$ is a smooth bounded domain, $\lambda>0$ and $\nu$ is the outward unit normal to $\partial\Omega$. We prove that there exists a constant $\lambda_0>0$ such that the above problem admits a minimal energy solution for $\lambda<\lambda_0$. Moreover, if $\Omega$ is convex, we show that this solution is constant for sufficiently small $\lambda$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信