Kondo-Tanaka扇形定理的修正

IF 0.8 4区 数学 Q2 MATHEMATICS
ERIC CHOI
{"title":"Kondo-Tanaka扇形定理的修正","authors":"ERIC CHOI","doi":"10.55730/1300-0098.3463","DOIUrl":null,"url":null,"abstract":"Kondo-Tanaka proved that if a rotationally symmetric plane $M_m$ is von Mangoldt or Cartan-Hadamard outside a compact set and has finite total curvature, then it has a sector with no pair of cut points. We show that the condition of finite total curvature can be removed. %The abstract should provide clear information about the research and the results obtained, and should not exceed 200 words. The abstract should not contain citations.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":"73 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of the sector theorem of Kondo-Tanaka\",\"authors\":\"ERIC CHOI\",\"doi\":\"10.55730/1300-0098.3463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kondo-Tanaka proved that if a rotationally symmetric plane $M_m$ is von Mangoldt or Cartan-Hadamard outside a compact set and has finite total curvature, then it has a sector with no pair of cut points. We show that the condition of finite total curvature can be removed. %The abstract should provide clear information about the research and the results obtained, and should not exceed 200 words. The abstract should not contain citations.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3463\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3463","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Kondo-Tanaka证明了如果一个旋转对称平面$M_m$是紧集外的von Mangoldt或Cartan-Hadamard,并且具有有限的总曲率,那么它有一个没有切割点对的扇形。我们证明了总曲率有限的条件是可以消除的。摘要应提供清晰的研究信息和获得的结果,不超过200字。摘要不应包含引文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modification of the sector theorem of Kondo-Tanaka
Kondo-Tanaka proved that if a rotationally symmetric plane $M_m$ is von Mangoldt or Cartan-Hadamard outside a compact set and has finite total curvature, then it has a sector with no pair of cut points. We show that the condition of finite total curvature can be removed. %The abstract should provide clear information about the research and the results obtained, and should not exceed 200 words. The abstract should not contain citations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信