g -Navier-Stokes方程速度涡量模型的弱解和强解

IF 0.8 4区 数学 Q2 MATHEMATICS
ÖZGE KAZAR, MERYEM KAYA
{"title":"g -Navier-Stokes方程速度涡量模型的弱解和强解","authors":"ÖZGE KAZAR, MERYEM KAYA","doi":"10.55730/1300-0098.3457","DOIUrl":null,"url":null,"abstract":"In this work, we consider a velocity-vorticity formulation for the $g$-Navier-Stokes equations. The system is constructed by combining the velocity-pressure system which is included by using the rotational formulation of the nonlinearity and the vorticity equation for the $g$ -Navier-Stokes equations. We prove the existence and uniqueness of weak and strong solutions of this system with the periodic boundary conditions.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":"2014 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the weak and strong solutions of the velocity-vorticity model of the $g$-Navier-Stokes equations\",\"authors\":\"ÖZGE KAZAR, MERYEM KAYA\",\"doi\":\"10.55730/1300-0098.3457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider a velocity-vorticity formulation for the $g$-Navier-Stokes equations. The system is constructed by combining the velocity-pressure system which is included by using the rotational formulation of the nonlinearity and the vorticity equation for the $g$ -Navier-Stokes equations. We prove the existence and uniqueness of weak and strong solutions of this system with the periodic boundary conditions.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3457\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3457","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了$g$-Navier-Stokes方程的速度-涡量公式。该系统是将非线性的旋转公式与涡度方程的$g$ -Navier-Stokes方程所包含的速度-压力系统结合起来构建的。利用周期边界条件证明了该系统弱解和强解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the weak and strong solutions of the velocity-vorticity model of the $g$-Navier-Stokes equations
In this work, we consider a velocity-vorticity formulation for the $g$-Navier-Stokes equations. The system is constructed by combining the velocity-pressure system which is included by using the rotational formulation of the nonlinearity and the vorticity equation for the $g$ -Navier-Stokes equations. We prove the existence and uniqueness of weak and strong solutions of this system with the periodic boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信