{"title":"利用feed搜索信息预测游客到达","authors":"Kaijian He, Qian Yang, Don Wu, Yingchao Zou","doi":"10.1080/13683500.2023.2259573","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe feed index is a weighted sum of the number of reactions (i.e. reading, comments, retweets, likes and dislikes, and so on.) that the content engine actively recommends and distributes to the users. It provides valuable information from big data on the Internet and high marketing value to Destination Marketing Organization as the content can be customized. A large-scale empirical study on the impact of the feed index on tourist arrival forecasting accuracy has been conducted, with a new approach proposed to incorporate the feed index into the tourist arrival forecasting model with higher forecasting accuracy. Firstly, the empirical results suggest that the feed index for different keywords reflects varying tourist preferences and has different impacts on tourist arrival movements, with variant lead-lag relationships. Secondly, the study shows that keywords need to be carefully selected based on theoretical analysis plus new methods such as entropy analysis. Therefore, it is proposed that entropy is employed to select the keywords and time lags, thus helping improve forecasting accuracy.KEYWORDS: Tourist arrival forecastingfeed indexARMAXseasonal ARMAX Disclosure statementAll authors had equal contribution to this research. No potential conflict of interest was reported by the authors.Notes1 https://index.baidu.com/v2/main/index.html#/help?anchor=pdescAdditional informationFundingThe work described in this paper was supported by a grant from National Natural Science Foundation of China (grant number 72271089), Hunan Provincial Natural Science Foundation of China (grant number 2022JJ30401) and partially sponsored by a scholarship from the Macao Foundation.","PeriodicalId":51354,"journal":{"name":"Current Issues in Tourism","volume":"39 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tourist arrival forecasting using feed search information\",\"authors\":\"Kaijian He, Qian Yang, Don Wu, Yingchao Zou\",\"doi\":\"10.1080/13683500.2023.2259573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe feed index is a weighted sum of the number of reactions (i.e. reading, comments, retweets, likes and dislikes, and so on.) that the content engine actively recommends and distributes to the users. It provides valuable information from big data on the Internet and high marketing value to Destination Marketing Organization as the content can be customized. A large-scale empirical study on the impact of the feed index on tourist arrival forecasting accuracy has been conducted, with a new approach proposed to incorporate the feed index into the tourist arrival forecasting model with higher forecasting accuracy. Firstly, the empirical results suggest that the feed index for different keywords reflects varying tourist preferences and has different impacts on tourist arrival movements, with variant lead-lag relationships. Secondly, the study shows that keywords need to be carefully selected based on theoretical analysis plus new methods such as entropy analysis. Therefore, it is proposed that entropy is employed to select the keywords and time lags, thus helping improve forecasting accuracy.KEYWORDS: Tourist arrival forecastingfeed indexARMAXseasonal ARMAX Disclosure statementAll authors had equal contribution to this research. No potential conflict of interest was reported by the authors.Notes1 https://index.baidu.com/v2/main/index.html#/help?anchor=pdescAdditional informationFundingThe work described in this paper was supported by a grant from National Natural Science Foundation of China (grant number 72271089), Hunan Provincial Natural Science Foundation of China (grant number 2022JJ30401) and partially sponsored by a scholarship from the Macao Foundation.\",\"PeriodicalId\":51354,\"journal\":{\"name\":\"Current Issues in Tourism\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Tourism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13683500.2023.2259573\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HOSPITALITY, LEISURE, SPORT & TOURISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Tourism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13683500.2023.2259573","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
Tourist arrival forecasting using feed search information
ABSTRACTThe feed index is a weighted sum of the number of reactions (i.e. reading, comments, retweets, likes and dislikes, and so on.) that the content engine actively recommends and distributes to the users. It provides valuable information from big data on the Internet and high marketing value to Destination Marketing Organization as the content can be customized. A large-scale empirical study on the impact of the feed index on tourist arrival forecasting accuracy has been conducted, with a new approach proposed to incorporate the feed index into the tourist arrival forecasting model with higher forecasting accuracy. Firstly, the empirical results suggest that the feed index for different keywords reflects varying tourist preferences and has different impacts on tourist arrival movements, with variant lead-lag relationships. Secondly, the study shows that keywords need to be carefully selected based on theoretical analysis plus new methods such as entropy analysis. Therefore, it is proposed that entropy is employed to select the keywords and time lags, thus helping improve forecasting accuracy.KEYWORDS: Tourist arrival forecastingfeed indexARMAXseasonal ARMAX Disclosure statementAll authors had equal contribution to this research. No potential conflict of interest was reported by the authors.Notes1 https://index.baidu.com/v2/main/index.html#/help?anchor=pdescAdditional informationFundingThe work described in this paper was supported by a grant from National Natural Science Foundation of China (grant number 72271089), Hunan Provincial Natural Science Foundation of China (grant number 2022JJ30401) and partially sponsored by a scholarship from the Macao Foundation.
期刊介绍:
Journal metrics are valuable for readers and authors in selecting a publication venue. However, it's crucial to understand that relying on any single metric provides only a partial perspective on a journal's quality and impact. Recognizing the limitations of each metric is essential, and they should never be considered in isolation. Instead, metrics should complement qualitative reviews, serving as a supportive tool rather than a replacement. This approach ensures a more comprehensive evaluation of a journal's overall quality and significance, as exemplified in Current Issues in Tourism.