{"title":"局部凸空间中的抽象简并Volterra内含子","authors":"Marko Kostic","doi":"10.58997/ejde.2023.63","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the abstract degenerate Volterra integro-differential equations in sequentially complete locally convex spaces by using multivalued linear operators and vector-valued Laplace transform. We follow the method which is based on the use of (a, k)-regularized C-resolvent families generated by multivalued linear operators and which suggests a very general way of approaching abstract Volterra equations. Among many other themes, we consider the Hille-Yosida type theorems for \\((a, k)\\)-regularized C-resolvent families, differential and analytical properties of \\((a, k)\\)-regularized $C$-resolvent families, the generalized variation of parameters formula, and subordination principles. We also introduce and analyze the class of \\((a, k)\\)-regularized \\((C_1,C_2)\\)-existence and uniqueness families. The main purpose of third section, which can be viewed of some independent interest, is to introduce a relatively simple and new theoretical concept useful in the analysis of operational properties of Laplace transform of non-continuous functions with values in sequentially complete locally convex spaces. This concept coincides with the classical concept of vector-valued Laplace transform in the case that \\(X\\) is a Banach space. For more information see https://ejde.math.txstate.edu/Volumes/2023/63/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"69 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract degenerate Volterra inclusions in locally convex spaces\",\"authors\":\"Marko Kostic\",\"doi\":\"10.58997/ejde.2023.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the abstract degenerate Volterra integro-differential equations in sequentially complete locally convex spaces by using multivalued linear operators and vector-valued Laplace transform. We follow the method which is based on the use of (a, k)-regularized C-resolvent families generated by multivalued linear operators and which suggests a very general way of approaching abstract Volterra equations. Among many other themes, we consider the Hille-Yosida type theorems for \\\\((a, k)\\\\)-regularized C-resolvent families, differential and analytical properties of \\\\((a, k)\\\\)-regularized $C$-resolvent families, the generalized variation of parameters formula, and subordination principles. We also introduce and analyze the class of \\\\((a, k)\\\\)-regularized \\\\((C_1,C_2)\\\\)-existence and uniqueness families. The main purpose of third section, which can be viewed of some independent interest, is to introduce a relatively simple and new theoretical concept useful in the analysis of operational properties of Laplace transform of non-continuous functions with values in sequentially complete locally convex spaces. This concept coincides with the classical concept of vector-valued Laplace transform in the case that \\\\(X\\\\) is a Banach space. For more information see https://ejde.math.txstate.edu/Volumes/2023/63/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.63\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58997/ejde.2023.63","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract degenerate Volterra inclusions in locally convex spaces
In this paper, we analyze the abstract degenerate Volterra integro-differential equations in sequentially complete locally convex spaces by using multivalued linear operators and vector-valued Laplace transform. We follow the method which is based on the use of (a, k)-regularized C-resolvent families generated by multivalued linear operators and which suggests a very general way of approaching abstract Volterra equations. Among many other themes, we consider the Hille-Yosida type theorems for \((a, k)\)-regularized C-resolvent families, differential and analytical properties of \((a, k)\)-regularized $C$-resolvent families, the generalized variation of parameters formula, and subordination principles. We also introduce and analyze the class of \((a, k)\)-regularized \((C_1,C_2)\)-existence and uniqueness families. The main purpose of third section, which can be viewed of some independent interest, is to introduce a relatively simple and new theoretical concept useful in the analysis of operational properties of Laplace transform of non-continuous functions with values in sequentially complete locally convex spaces. This concept coincides with the classical concept of vector-valued Laplace transform in the case that \(X\) is a Banach space. For more information see https://ejde.math.txstate.edu/Volumes/2023/63/abstr.html
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.