{"title":"v尾固定翼无人机动态避障场景建模研究","authors":"Peihao Huang, Yong Tang, Bingsan Yang, Tao Wang","doi":"10.3390/drones7100601","DOIUrl":null,"url":null,"abstract":"With the advantages of long-range flight and high payload capacity, large fixed-wing UAVs are often used in anti-terrorism missions, disaster surveillance, and emergency supply delivery. In the existing research, there is little research on the 3D model design of the V-tail fixed-wing UAV and 3D flight environment modeling. The study focuses on designing a comprehensive simulation environment using Gazebo and ROS, referencing existing large fixed-wing UAVs, to design a V-tail aircraft, incorporating realistic aircraft dynamics, aerodynamics, and flight controls. Additionally, we present a simulation environment modeling approach tailored for obstacle avoidance in no-fly zones, and have created a 3D flight environment in Gazebo, generating a large-scale terrain map based on the original grayscale heightmap. This terrain map is used to simulate potential mountainous terrain threats that a fixed-wing UAV might encounter during mission execution. We have also introduced wind disturbances and other specific no-fly zones. We integrated the V-tail fixed-wing aircraft model into the 3D flight environment in Gazebo and designed PID controllers to stabilize the aircraft’s flight attitude.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"28 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Scenario Modeling for V-Tail Fixed-Wing UAV Dynamic Obstacle Avoidance\",\"authors\":\"Peihao Huang, Yong Tang, Bingsan Yang, Tao Wang\",\"doi\":\"10.3390/drones7100601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advantages of long-range flight and high payload capacity, large fixed-wing UAVs are often used in anti-terrorism missions, disaster surveillance, and emergency supply delivery. In the existing research, there is little research on the 3D model design of the V-tail fixed-wing UAV and 3D flight environment modeling. The study focuses on designing a comprehensive simulation environment using Gazebo and ROS, referencing existing large fixed-wing UAVs, to design a V-tail aircraft, incorporating realistic aircraft dynamics, aerodynamics, and flight controls. Additionally, we present a simulation environment modeling approach tailored for obstacle avoidance in no-fly zones, and have created a 3D flight environment in Gazebo, generating a large-scale terrain map based on the original grayscale heightmap. This terrain map is used to simulate potential mountainous terrain threats that a fixed-wing UAV might encounter during mission execution. We have also introduced wind disturbances and other specific no-fly zones. We integrated the V-tail fixed-wing aircraft model into the 3D flight environment in Gazebo and designed PID controllers to stabilize the aircraft’s flight attitude.\",\"PeriodicalId\":36448,\"journal\":{\"name\":\"Drones\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones7100601\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100601","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Research on Scenario Modeling for V-Tail Fixed-Wing UAV Dynamic Obstacle Avoidance
With the advantages of long-range flight and high payload capacity, large fixed-wing UAVs are often used in anti-terrorism missions, disaster surveillance, and emergency supply delivery. In the existing research, there is little research on the 3D model design of the V-tail fixed-wing UAV and 3D flight environment modeling. The study focuses on designing a comprehensive simulation environment using Gazebo and ROS, referencing existing large fixed-wing UAVs, to design a V-tail aircraft, incorporating realistic aircraft dynamics, aerodynamics, and flight controls. Additionally, we present a simulation environment modeling approach tailored for obstacle avoidance in no-fly zones, and have created a 3D flight environment in Gazebo, generating a large-scale terrain map based on the original grayscale heightmap. This terrain map is used to simulate potential mountainous terrain threats that a fixed-wing UAV might encounter during mission execution. We have also introduced wind disturbances and other specific no-fly zones. We integrated the V-tail fixed-wing aircraft model into the 3D flight environment in Gazebo and designed PID controllers to stabilize the aircraft’s flight attitude.