{"title":"韦尔互惠的分析视角","authors":"James Cogdell, Jay Jorgenson, Lejla Smajlović","doi":"10.51286/albjm/1675936045","DOIUrl":null,"url":null,"abstract":"In Cogdell et al., LMS Lecture Notes Series 459, 393–427 (2020), the authors proved a type of Kronecker’s limit formula associated to any divisor D on any smooth Kähler manifold X, assuming that D is smooth in codimension one. In the present article, it is shown how the aforementioned analogue of Kronecker’s limit formula applies to reprove and generalize Weil reciprocity. More precisely, we extend Weil reciprocity to (suitably normalized) meromorphic modular forms of even weight on a smooth, compact Riemann surface, and present a variant of Weil reciprocity for a class of harmonic functions with special types of singularities on a finite volume quotient of a symmetric space or a compact, smooth projective Kähler variety. We also prove an integral version of Weil reciprocity for a compact, smooth projective Kähler variety.","PeriodicalId":484514,"journal":{"name":"Albanian journal of mathematics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN ANALYTIC PERSPECTIVE OF WEIL RECIPROCITY\",\"authors\":\"James Cogdell, Jay Jorgenson, Lejla Smajlović\",\"doi\":\"10.51286/albjm/1675936045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Cogdell et al., LMS Lecture Notes Series 459, 393–427 (2020), the authors proved a type of Kronecker’s limit formula associated to any divisor D on any smooth Kähler manifold X, assuming that D is smooth in codimension one. In the present article, it is shown how the aforementioned analogue of Kronecker’s limit formula applies to reprove and generalize Weil reciprocity. More precisely, we extend Weil reciprocity to (suitably normalized) meromorphic modular forms of even weight on a smooth, compact Riemann surface, and present a variant of Weil reciprocity for a class of harmonic functions with special types of singularities on a finite volume quotient of a symmetric space or a compact, smooth projective Kähler variety. We also prove an integral version of Weil reciprocity for a compact, smooth projective Kähler variety.\",\"PeriodicalId\":484514,\"journal\":{\"name\":\"Albanian journal of mathematics\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Albanian journal of mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51286/albjm/1675936045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Albanian journal of mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51286/albjm/1675936045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在Cogdell et al., LMS Lecture Notes Series 459, 393-427(2020)中,作者证明了在任意光滑Kähler流形X上与任意因子D相关的一类Kronecker极限公式,假设D在余维1上是光滑的。在本文中,说明了上述的Kronecker极限公式的类比如何应用于Weil互易性的否定和推广。更准确地说,我们将Weil互易推广到光滑紧致Riemann曲面上偶权的亚纯模形式(适当规范化),并给出了一类在对称空间的有限体积商或紧致光滑投影Kähler变体上具有特殊奇点类型的调和函数的Weil互易的一个变体。我们也证明了一个紧致光滑射影Kähler簇的Weil互易性的一个积分版本。
In Cogdell et al., LMS Lecture Notes Series 459, 393–427 (2020), the authors proved a type of Kronecker’s limit formula associated to any divisor D on any smooth Kähler manifold X, assuming that D is smooth in codimension one. In the present article, it is shown how the aforementioned analogue of Kronecker’s limit formula applies to reprove and generalize Weil reciprocity. More precisely, we extend Weil reciprocity to (suitably normalized) meromorphic modular forms of even weight on a smooth, compact Riemann surface, and present a variant of Weil reciprocity for a class of harmonic functions with special types of singularities on a finite volume quotient of a symmetric space or a compact, smooth projective Kähler variety. We also prove an integral version of Weil reciprocity for a compact, smooth projective Kähler variety.