None Shahad A. Salih, None Sadik Kamel Gharghan, None Jinan F. Mahdi, None Inas Jawad Kadhim
{"title":"基于深度学习的肺部疾病诊断方法综述","authors":"None Shahad A. Salih, None Sadik Kamel Gharghan, None Jinan F. Mahdi, None Inas Jawad Kadhim","doi":"10.51173/jt.v5i3.1469","DOIUrl":null,"url":null,"abstract":"This review paper examines the current state of lung disease diagnosis based on deep learning (DL) methods. Lung diseases, such as Pneumonia, TB, Covid-19, and lung cancer, are significant causes of morbidity and mortality worldwide. Accurate and timely diagnosis of these diseases is essential for effective treatment and improved patient outcomes. DL methods, which utilize artificial neural networks to extract features from medical images automatically, have shown great promise in improving the accuracy and efficiency of lung disease diagnosis. This review discusses the various DL methods that have been developed for lung disease diagnosis, including convolutional neural networks (CNNs), deep neural networks (DNNs), and generative adversarial networks (GANs). The advantages and limitations of each method are discussed, along with the types of medical imaging techniques used, such as X-ray and computed tomography (CT). In addition, the review discusses the most commonly used performance metrics for evaluating the performance of DL for lung disease diagnosis: the area under the curve (AUC), sensitivity, specificity, F1-score, accuracy, precision, and the receiver operator characteristic curve (ROC). Moreover, the challenges and limitations of using DL for lung disease diagnosis, including the limited availability of annotated data, the variability in imaging techniques and disease presentation, and the interpretability and generalizability of DL models, are highlighted in this paper. Furthermore, strategies to overcome these challenges, such as transfer learning, data augmentation, and explainable AI, are also discussed. The review concludes with a call for further research to address the remaining challenges and realize DL's full potential for improving lung disease diagnosis and treatment.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lung Diseases Diagnosis-Based Deep Learning Methods: A Review\",\"authors\":\"None Shahad A. Salih, None Sadik Kamel Gharghan, None Jinan F. Mahdi, None Inas Jawad Kadhim\",\"doi\":\"10.51173/jt.v5i3.1469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper examines the current state of lung disease diagnosis based on deep learning (DL) methods. Lung diseases, such as Pneumonia, TB, Covid-19, and lung cancer, are significant causes of morbidity and mortality worldwide. Accurate and timely diagnosis of these diseases is essential for effective treatment and improved patient outcomes. DL methods, which utilize artificial neural networks to extract features from medical images automatically, have shown great promise in improving the accuracy and efficiency of lung disease diagnosis. This review discusses the various DL methods that have been developed for lung disease diagnosis, including convolutional neural networks (CNNs), deep neural networks (DNNs), and generative adversarial networks (GANs). The advantages and limitations of each method are discussed, along with the types of medical imaging techniques used, such as X-ray and computed tomography (CT). In addition, the review discusses the most commonly used performance metrics for evaluating the performance of DL for lung disease diagnosis: the area under the curve (AUC), sensitivity, specificity, F1-score, accuracy, precision, and the receiver operator characteristic curve (ROC). Moreover, the challenges and limitations of using DL for lung disease diagnosis, including the limited availability of annotated data, the variability in imaging techniques and disease presentation, and the interpretability and generalizability of DL models, are highlighted in this paper. Furthermore, strategies to overcome these challenges, such as transfer learning, data augmentation, and explainable AI, are also discussed. The review concludes with a call for further research to address the remaining challenges and realize DL's full potential for improving lung disease diagnosis and treatment.\",\"PeriodicalId\":39617,\"journal\":{\"name\":\"Journal of Biomolecular Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51173/jt.v5i3.1469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i3.1469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Lung Diseases Diagnosis-Based Deep Learning Methods: A Review
This review paper examines the current state of lung disease diagnosis based on deep learning (DL) methods. Lung diseases, such as Pneumonia, TB, Covid-19, and lung cancer, are significant causes of morbidity and mortality worldwide. Accurate and timely diagnosis of these diseases is essential for effective treatment and improved patient outcomes. DL methods, which utilize artificial neural networks to extract features from medical images automatically, have shown great promise in improving the accuracy and efficiency of lung disease diagnosis. This review discusses the various DL methods that have been developed for lung disease diagnosis, including convolutional neural networks (CNNs), deep neural networks (DNNs), and generative adversarial networks (GANs). The advantages and limitations of each method are discussed, along with the types of medical imaging techniques used, such as X-ray and computed tomography (CT). In addition, the review discusses the most commonly used performance metrics for evaluating the performance of DL for lung disease diagnosis: the area under the curve (AUC), sensitivity, specificity, F1-score, accuracy, precision, and the receiver operator characteristic curve (ROC). Moreover, the challenges and limitations of using DL for lung disease diagnosis, including the limited availability of annotated data, the variability in imaging techniques and disease presentation, and the interpretability and generalizability of DL models, are highlighted in this paper. Furthermore, strategies to overcome these challenges, such as transfer learning, data augmentation, and explainable AI, are also discussed. The review concludes with a call for further research to address the remaining challenges and realize DL's full potential for improving lung disease diagnosis and treatment.
期刊介绍:
The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.