矩形通道内两级电液动力气泵

Q3 Engineering
Sotirios J. Tampouris, Antonios X. Moronis
{"title":"矩形通道内两级电液动力气泵","authors":"Sotirios J. Tampouris, Antonios X. Moronis","doi":"10.37394/232013.2023.18.9","DOIUrl":null,"url":null,"abstract":"Electrohydrodynamic (EHD) fluid pumps generate physical flux in a dielectric fluid without using any moving parts. The advantages of EHD pumps are implemented in a wide variety of applications especially when miniaturization and/or noise absence are required, such as in cooling applications. Research efforts focus on improving existing concepts of efficiency optimization. Researchers are recently considering the concept of cascading stages, among other options. In this research, an experimental investigation of a two-stage wire-to-mesh EHD air pump has been made, providing information on the air velocity generated and the electrical power demand. Based on the testing results, a two-stage cascading EHD pump has significantly higher airflow velocity and efficiency than the conventional single-stage design. The two-stage structure was found to preserve the advantages of EHD pumping technology while being directly comparable in terms of EHD flow characteristics with conventional mechanical fans of similar dimensions.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Stage Electrohydrodynamic Gas Pump in a Rectangular Channel\",\"authors\":\"Sotirios J. Tampouris, Antonios X. Moronis\",\"doi\":\"10.37394/232013.2023.18.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrohydrodynamic (EHD) fluid pumps generate physical flux in a dielectric fluid without using any moving parts. The advantages of EHD pumps are implemented in a wide variety of applications especially when miniaturization and/or noise absence are required, such as in cooling applications. Research efforts focus on improving existing concepts of efficiency optimization. Researchers are recently considering the concept of cascading stages, among other options. In this research, an experimental investigation of a two-stage wire-to-mesh EHD air pump has been made, providing information on the air velocity generated and the electrical power demand. Based on the testing results, a two-stage cascading EHD pump has significantly higher airflow velocity and efficiency than the conventional single-stage design. The two-stage structure was found to preserve the advantages of EHD pumping technology while being directly comparable in terms of EHD flow characteristics with conventional mechanical fans of similar dimensions.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2023.18.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2023.18.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

电流体动力(EHD)流体泵在不使用任何运动部件的情况下产生介电流体中的物理通量。EHD泵的优势被广泛应用于各种应用中,特别是在需要小型化和/或无噪声的情况下,例如在冷却应用中。研究的重点是改进现有的效率优化概念。研究人员最近正在考虑级联阶段的概念,以及其他选择。在本研究中,对两级线网式EHD气泵进行了实验研究,提供了产生的空气速度和电力需求的信息。试验结果表明,两级级联式EHD泵的气流速度和效率明显高于常规单级设计。研究发现,两级结构既保留了EHD泵送技术的优势,同时在EHD流动特性方面与类似尺寸的传统机械风扇直接相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Two-Stage Electrohydrodynamic Gas Pump in a Rectangular Channel
Electrohydrodynamic (EHD) fluid pumps generate physical flux in a dielectric fluid without using any moving parts. The advantages of EHD pumps are implemented in a wide variety of applications especially when miniaturization and/or noise absence are required, such as in cooling applications. Research efforts focus on improving existing concepts of efficiency optimization. Researchers are recently considering the concept of cascading stages, among other options. In this research, an experimental investigation of a two-stage wire-to-mesh EHD air pump has been made, providing information on the air velocity generated and the electrical power demand. Based on the testing results, a two-stage cascading EHD pump has significantly higher airflow velocity and efficiency than the conventional single-stage design. The two-stage structure was found to preserve the advantages of EHD pumping technology while being directly comparable in terms of EHD flow characteristics with conventional mechanical fans of similar dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信