{"title":"挪威海上风电—基于多准则决策分析的空间规划","authors":"Ida Marie Solbrekke, Asgeir Sorteberg","doi":"10.1002/we.2871","DOIUrl":null,"url":null,"abstract":"Abstract The Norwegian government recently agreed on the goal 30by40 , which involves opening Norwegian offshore areas to host 30 GW of installed wind power by 2040. We address this goal by presenting a first mapping of wind power suitability scores (WPSS) for the entire Norwegian economic zone (NEZ) using a multi‐criteria decision analysis framework (MCDA), namely, the analytical hierarchical process (AHP) approach. We obtain WPSS considering relevant criteria like wind resources, techno‐economic aspects, social acceptance, environmental considerations, and met‐ocean constraints such as wind and wave conditions. The results starts with a baseline scenario, where the criterion importance is pairwise compared in the context of balancing economic incentives and conflicting interests. Additionally, to reveal regions that are robust to changes in criterion importance, we carry out a sensitivity analysis by introducing three additional scenarios. These scenarios represent stereotypical actors with distinct preferences for siting of wind farms: the investor , the environmentalist , and the fisherman . The results show that the southern part of the NEZ is the most suitable and robust region for offshore wind power deployment. This region receives the highest suitability category (“very high” suitability for wind power application) throughout all the scenarios. Areas in the Norwegian part of the Barents Sea and the near‐coastal areas outside mid‐Norway are also well suited regions, but these are more sensitive to the choice of criterion importance. The use of AHP within the framework of MCDA is shown to be a promising tool for pinpointing the best Norwegian offshore areas for wind power application.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":"12 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norwegian offshore wind power—Spatial planning using multi‐criteria decision analysis\",\"authors\":\"Ida Marie Solbrekke, Asgeir Sorteberg\",\"doi\":\"10.1002/we.2871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Norwegian government recently agreed on the goal 30by40 , which involves opening Norwegian offshore areas to host 30 GW of installed wind power by 2040. We address this goal by presenting a first mapping of wind power suitability scores (WPSS) for the entire Norwegian economic zone (NEZ) using a multi‐criteria decision analysis framework (MCDA), namely, the analytical hierarchical process (AHP) approach. We obtain WPSS considering relevant criteria like wind resources, techno‐economic aspects, social acceptance, environmental considerations, and met‐ocean constraints such as wind and wave conditions. The results starts with a baseline scenario, where the criterion importance is pairwise compared in the context of balancing economic incentives and conflicting interests. Additionally, to reveal regions that are robust to changes in criterion importance, we carry out a sensitivity analysis by introducing three additional scenarios. These scenarios represent stereotypical actors with distinct preferences for siting of wind farms: the investor , the environmentalist , and the fisherman . The results show that the southern part of the NEZ is the most suitable and robust region for offshore wind power deployment. This region receives the highest suitability category (“very high” suitability for wind power application) throughout all the scenarios. Areas in the Norwegian part of the Barents Sea and the near‐coastal areas outside mid‐Norway are also well suited regions, but these are more sensitive to the choice of criterion importance. The use of AHP within the framework of MCDA is shown to be a promising tool for pinpointing the best Norwegian offshore areas for wind power application.\",\"PeriodicalId\":23689,\"journal\":{\"name\":\"Wind Energy\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/we.2871\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/we.2871","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Norwegian offshore wind power—Spatial planning using multi‐criteria decision analysis
Abstract The Norwegian government recently agreed on the goal 30by40 , which involves opening Norwegian offshore areas to host 30 GW of installed wind power by 2040. We address this goal by presenting a first mapping of wind power suitability scores (WPSS) for the entire Norwegian economic zone (NEZ) using a multi‐criteria decision analysis framework (MCDA), namely, the analytical hierarchical process (AHP) approach. We obtain WPSS considering relevant criteria like wind resources, techno‐economic aspects, social acceptance, environmental considerations, and met‐ocean constraints such as wind and wave conditions. The results starts with a baseline scenario, where the criterion importance is pairwise compared in the context of balancing economic incentives and conflicting interests. Additionally, to reveal regions that are robust to changes in criterion importance, we carry out a sensitivity analysis by introducing three additional scenarios. These scenarios represent stereotypical actors with distinct preferences for siting of wind farms: the investor , the environmentalist , and the fisherman . The results show that the southern part of the NEZ is the most suitable and robust region for offshore wind power deployment. This region receives the highest suitability category (“very high” suitability for wind power application) throughout all the scenarios. Areas in the Norwegian part of the Barents Sea and the near‐coastal areas outside mid‐Norway are also well suited regions, but these are more sensitive to the choice of criterion importance. The use of AHP within the framework of MCDA is shown to be a promising tool for pinpointing the best Norwegian offshore areas for wind power application.
期刊介绍:
Wind Energy offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realising the world-wide potential to harness clean energy from land-based and offshore wind. The journal aims to reach all those with an interest in this field from academic research, industrial development through to applications, including individual wind turbines and components, wind farms and integration of wind power plants. Contributions across the spectrum of scientific and engineering disciplines concerned with the advancement of wind power capture, conversion, integration and utilisation technologies are essential features of the journal.