求解摆动方程的主谐波和次谐波共振

Q3 Engineering
Anastasia Sofroniou, Bhairavi Premnath
{"title":"求解摆动方程的主谐波和次谐波共振","authors":"Anastasia Sofroniou, Bhairavi Premnath","doi":"10.37394/232011.2023.18.19","DOIUrl":null,"url":null,"abstract":"A research investigation is undertaken to gain a more comprehensive understanding of the primary and subharmonic resonances exhibited by the swing equation. The occurrence of the primary resonance is characterised by amplified oscillatory reactions, voltage instability, and the possibility for system failure. The phenomenon of subharmonic resonance arises when the frequency of disturbance is a whole-number fraction of the natural frequency. This results in the occurrence of low-frequency oscillations and the potential for detrimental effects on equipment. The objective of this study is to expand upon the current literature regarding the impacts of primary resonance and enhance comprehension of subharmonic resonance in relation to the stability of a specific power system model. The analytical and numerical tools are utilised to investigate the fundamental principles of this resonant-related problem, aiming to provide an effective control solution. This choice is driven by the model’s complex nonlinear dynamical behaviour, which offers valuable insights for further analysis. This analysis includes the Floquet Method, the Method of strained parameters, and the concept of tangent instability in order to provide an extension to existing literature relating to primary and subharmonic resonances, taking into account the dynamic and bifurcation characteristics of the swing equation. This objective will be achieved through the utilisation of both analytical and numerical methods, enabling the identification of specific indicators of chaos that can contribute to the safe operation of real-world scenarios.","PeriodicalId":53603,"journal":{"name":"WSEAS Transactions on Applied and Theoretical Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing the Primary and Subharmonic Resonances of the Swing Equation\",\"authors\":\"Anastasia Sofroniou, Bhairavi Premnath\",\"doi\":\"10.37394/232011.2023.18.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A research investigation is undertaken to gain a more comprehensive understanding of the primary and subharmonic resonances exhibited by the swing equation. The occurrence of the primary resonance is characterised by amplified oscillatory reactions, voltage instability, and the possibility for system failure. The phenomenon of subharmonic resonance arises when the frequency of disturbance is a whole-number fraction of the natural frequency. This results in the occurrence of low-frequency oscillations and the potential for detrimental effects on equipment. The objective of this study is to expand upon the current literature regarding the impacts of primary resonance and enhance comprehension of subharmonic resonance in relation to the stability of a specific power system model. The analytical and numerical tools are utilised to investigate the fundamental principles of this resonant-related problem, aiming to provide an effective control solution. This choice is driven by the model’s complex nonlinear dynamical behaviour, which offers valuable insights for further analysis. This analysis includes the Floquet Method, the Method of strained parameters, and the concept of tangent instability in order to provide an extension to existing literature relating to primary and subharmonic resonances, taking into account the dynamic and bifurcation characteristics of the swing equation. This objective will be achieved through the utilisation of both analytical and numerical methods, enabling the identification of specific indicators of chaos that can contribute to the safe operation of real-world scenarios.\",\"PeriodicalId\":53603,\"journal\":{\"name\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232011.2023.18.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Applied and Theoretical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232011.2023.18.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了更全面地了解摆动方程所表现出的初级和次谐波共振,进行了一项研究调查。发生主共振的特点是振荡反应放大、电压不稳定和系统故障的可能性。当扰动频率为固有频率的整数分数时,会产生次谐波谐振现象。这导致低频振荡的发生和对设备的潜在有害影响。本研究的目的是在现有文献的基础上扩展关于主共振的影响,并加强对次谐波共振与特定电力系统模型稳定性的理解。利用分析和数值工具来研究这种谐振相关问题的基本原理,旨在提供有效的控制解决方案。这种选择是由模型复杂的非线性动力学行为驱动的,这为进一步的分析提供了有价值的见解。该分析包括Floquet方法、应变参数法和切线不稳定性的概念,以提供对现有文献有关初级和次谐波共振的扩展,考虑到摆动方程的动态和分岔特性。这一目标将通过利用分析和数值方法来实现,从而能够识别特定的混沌指标,从而有助于现实世界场景的安全运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing the Primary and Subharmonic Resonances of the Swing Equation
A research investigation is undertaken to gain a more comprehensive understanding of the primary and subharmonic resonances exhibited by the swing equation. The occurrence of the primary resonance is characterised by amplified oscillatory reactions, voltage instability, and the possibility for system failure. The phenomenon of subharmonic resonance arises when the frequency of disturbance is a whole-number fraction of the natural frequency. This results in the occurrence of low-frequency oscillations and the potential for detrimental effects on equipment. The objective of this study is to expand upon the current literature regarding the impacts of primary resonance and enhance comprehension of subharmonic resonance in relation to the stability of a specific power system model. The analytical and numerical tools are utilised to investigate the fundamental principles of this resonant-related problem, aiming to provide an effective control solution. This choice is driven by the model’s complex nonlinear dynamical behaviour, which offers valuable insights for further analysis. This analysis includes the Floquet Method, the Method of strained parameters, and the concept of tangent instability in order to provide an extension to existing literature relating to primary and subharmonic resonances, taking into account the dynamic and bifurcation characteristics of the swing equation. This objective will be achieved through the utilisation of both analytical and numerical methods, enabling the identification of specific indicators of chaos that can contribute to the safe operation of real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Applied and Theoretical Mechanics
WSEAS Transactions on Applied and Theoretical Mechanics Engineering-Computational Mechanics
CiteScore
1.30
自引率
0.00%
发文量
21
期刊介绍: WSEAS Transactions on Applied and Theoretical Mechanics publishes original research papers relating to computational and experimental mechanics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with fluid-structure interaction, impact and multibody dynamics, nonlinear dynamics, structural dynamics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信