{"title":"异或链与量子时代的完美保密","authors":"Luis Adrián Lizama-Pérez","doi":"10.3390/cryptography7040050","DOIUrl":null,"url":null,"abstract":"In this article, we present a new method that achieves Shannon’s perfect secrecy. To achieve this property, we will introduce the triple XOR cancellation rule. The approach has two execution modes: digital signature and data encryption. We provide perfect secrecy proof of the encryption method. Furthermore, based on our fundamental algorithm, we developed a new strategy for the blockchain system that does not require proof of work (PoW). However, it is a practical mechanism for connecting blocks to the chain. Due to the risk that quantum computers present for current cryptosystems based on prime factorization or discrete logarithm, we postulate that our method represents a promising alternative in the quantum era. We expect our work to have profound implications for the security of communications between mobile devices, the Internet of Things (IoT), and the blockchain.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XOR Chain and Perfect Secrecy at the Dawn of the Quantum Era\",\"authors\":\"Luis Adrián Lizama-Pérez\",\"doi\":\"10.3390/cryptography7040050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a new method that achieves Shannon’s perfect secrecy. To achieve this property, we will introduce the triple XOR cancellation rule. The approach has two execution modes: digital signature and data encryption. We provide perfect secrecy proof of the encryption method. Furthermore, based on our fundamental algorithm, we developed a new strategy for the blockchain system that does not require proof of work (PoW). However, it is a practical mechanism for connecting blocks to the chain. Due to the risk that quantum computers present for current cryptosystems based on prime factorization or discrete logarithm, we postulate that our method represents a promising alternative in the quantum era. We expect our work to have profound implications for the security of communications between mobile devices, the Internet of Things (IoT), and the blockchain.\",\"PeriodicalId\":36072,\"journal\":{\"name\":\"Cryptography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryptography7040050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7040050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
XOR Chain and Perfect Secrecy at the Dawn of the Quantum Era
In this article, we present a new method that achieves Shannon’s perfect secrecy. To achieve this property, we will introduce the triple XOR cancellation rule. The approach has two execution modes: digital signature and data encryption. We provide perfect secrecy proof of the encryption method. Furthermore, based on our fundamental algorithm, we developed a new strategy for the blockchain system that does not require proof of work (PoW). However, it is a practical mechanism for connecting blocks to the chain. Due to the risk that quantum computers present for current cryptosystems based on prime factorization or discrete logarithm, we postulate that our method represents a promising alternative in the quantum era. We expect our work to have profound implications for the security of communications between mobile devices, the Internet of Things (IoT), and the blockchain.