具有Hardy势的Hardy- sobolev型不等式的极小值的存在性与不存在性

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Jann-Long Chern, Masato Hashizume, Gyeongha Hwang
{"title":"具有Hardy势的Hardy- sobolev型不等式的极小值的存在性与不存在性","authors":"Jann-Long Chern, Masato Hashizume, Gyeongha Hwang","doi":"10.1080/00036811.2023.2268659","DOIUrl":null,"url":null,"abstract":"AbstractMotivated by the Hardy-Sobolev inequality with multiple Hardy potentials, we consider the following minimization problem : inf{|u|2s∗|x|s∫Ω|∇u|2dx−λ1∫Ωu2|x−P1|2dx−λ2∫Ωu2|x−P2|2dx|u∈H01(Ω),∫Ω|u|2s∗|x|sdx=1}where N≥3, Ω is a smooth domain, λ1,λ2∈R, 0,P1,P2∈Ω, s∈(0,2) and 2s∗=2(N−s)N−2. Concerning the coefficients of Hardy potentials, we derive a sharp threshold for the existence and non-existence of a minimizer. In addition, we study the existence and non-existence of a positive solution to the Euler-Lagrangian equations corresponding to the minimization problems.Keywords: Semilinear elliptic equationexistencenon-existenceminimizers of Hardy-Sobolev type inequalityHardy potentialMathematic Subject classifications: 35J2035J61 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe first author is supported by NSTC of Taiwan, Grant Number NSTC 110-2115-M-003-019-MY3 and NSTC 111-2218-E-008-004-MBK. The second author is supported by Grant-in-Aid for JSPS Research Fellow (JSPS KAKENHI Grant Number JP19K14571) and Osaka Central Advanced Mathematical Institute: MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849. The third author is supported by the 2020 Yeungnam University Research Grant. The authors thank Professors Futoshi Takahashi and Megumi Sano for their helpful comments on the results.","PeriodicalId":55507,"journal":{"name":"Applicable Analysis","volume":"3 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and non-existence of minimizers for Hardy-Sobolev type inequality with Hardy potentials\",\"authors\":\"Jann-Long Chern, Masato Hashizume, Gyeongha Hwang\",\"doi\":\"10.1080/00036811.2023.2268659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractMotivated by the Hardy-Sobolev inequality with multiple Hardy potentials, we consider the following minimization problem : inf{|u|2s∗|x|s∫Ω|∇u|2dx−λ1∫Ωu2|x−P1|2dx−λ2∫Ωu2|x−P2|2dx|u∈H01(Ω),∫Ω|u|2s∗|x|sdx=1}where N≥3, Ω is a smooth domain, λ1,λ2∈R, 0,P1,P2∈Ω, s∈(0,2) and 2s∗=2(N−s)N−2. Concerning the coefficients of Hardy potentials, we derive a sharp threshold for the existence and non-existence of a minimizer. In addition, we study the existence and non-existence of a positive solution to the Euler-Lagrangian equations corresponding to the minimization problems.Keywords: Semilinear elliptic equationexistencenon-existenceminimizers of Hardy-Sobolev type inequalityHardy potentialMathematic Subject classifications: 35J2035J61 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe first author is supported by NSTC of Taiwan, Grant Number NSTC 110-2115-M-003-019-MY3 and NSTC 111-2218-E-008-004-MBK. The second author is supported by Grant-in-Aid for JSPS Research Fellow (JSPS KAKENHI Grant Number JP19K14571) and Osaka Central Advanced Mathematical Institute: MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849. The third author is supported by the 2020 Yeungnam University Research Grant. The authors thank Professors Futoshi Takahashi and Megumi Sano for their helpful comments on the results.\",\"PeriodicalId\":55507,\"journal\":{\"name\":\"Applicable Analysis\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00036811.2023.2268659\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00036811.2023.2268659","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要根据具有多个Hardy位的Hardy- sobolev不等式,我们考虑以下最小化问题:inf{|u|2s∗|x|s∫Ω|∇u|2dx−λ1∫Ωu2|x−P1|2dx−λ2∫Ωu2|x−P2|2dx|u∈H01(Ω),∫Ω|u|2s∗|x|sdx=1}其中N≥3,Ω是光滑域,λ1,λ2∈R, 0,P1,P2∈Ω, s∈(0,2),2s∗=2(N−s)N−2。对于Hardy势的系数,我们导出了最小值存在和不存在的一个尖锐阈值。此外,我们还研究了最小化问题所对应的欧拉-拉格朗日方程正解的存在性和不存在性。关键词:半线性椭圆方程;存在;不存在;Hardy-Sobolev型不等式的极小值;hardy潜势;数学学科分类:35J2035J61披露声明作者未报告潜在利益冲突。本文第一作者为台湾省国家科学技术委员会资助项目,批准号:NSTC 110-2115-M-003-019-MY3和NSTC 111-2218-E-008-004-MBK。第二作者由JSPS研究员资助基金(JSPS KAKENHI资助号JP19K14571)和大阪中央高等数学研究所:MEXT联合使用/数学与理论物理研究中心JPMXP0619217849资助。第三作者获得岭南大学2020年研究补助金。作者感谢Futoshi Takahashi教授和Megumi Sano教授对结果的有益评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and non-existence of minimizers for Hardy-Sobolev type inequality with Hardy potentials
AbstractMotivated by the Hardy-Sobolev inequality with multiple Hardy potentials, we consider the following minimization problem : inf{|u|2s∗|x|s∫Ω|∇u|2dx−λ1∫Ωu2|x−P1|2dx−λ2∫Ωu2|x−P2|2dx|u∈H01(Ω),∫Ω|u|2s∗|x|sdx=1}where N≥3, Ω is a smooth domain, λ1,λ2∈R, 0,P1,P2∈Ω, s∈(0,2) and 2s∗=2(N−s)N−2. Concerning the coefficients of Hardy potentials, we derive a sharp threshold for the existence and non-existence of a minimizer. In addition, we study the existence and non-existence of a positive solution to the Euler-Lagrangian equations corresponding to the minimization problems.Keywords: Semilinear elliptic equationexistencenon-existenceminimizers of Hardy-Sobolev type inequalityHardy potentialMathematic Subject classifications: 35J2035J61 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe first author is supported by NSTC of Taiwan, Grant Number NSTC 110-2115-M-003-019-MY3 and NSTC 111-2218-E-008-004-MBK. The second author is supported by Grant-in-Aid for JSPS Research Fellow (JSPS KAKENHI Grant Number JP19K14571) and Osaka Central Advanced Mathematical Institute: MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849. The third author is supported by the 2020 Yeungnam University Research Grant. The authors thank Professors Futoshi Takahashi and Megumi Sano for their helpful comments on the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis
Applicable Analysis 数学-应用数学
CiteScore
2.60
自引率
9.10%
发文量
175
审稿时长
2 months
期刊介绍: Applicable Analysis is concerned primarily with analysis that has application to scientific and engineering problems. Papers should indicate clearly an application of the mathematics involved. On the other hand, papers that are primarily concerned with modeling rather than analysis are outside the scope of the journal General areas of analysis that are welcomed contain the areas of differential equations, with emphasis on PDEs, and integral equations, nonlinear analysis, applied functional analysis, theoretical numerical analysis and approximation theory. Areas of application, for instance, include the use of homogenization theory for electromagnetic phenomena, acoustic vibrations and other problems with multiple space and time scales, inverse problems for medical imaging and geophysics, variational methods for moving boundary problems, convex analysis for theoretical mechanics and analytical methods for spatial bio-mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信