量子协变导数:导出所有阶绝热微扰理论的工具

Ryan Requist
{"title":"量子协变导数:导出所有阶绝热微扰理论的工具","authors":"Ryan Requist","doi":"10.1088/1751-8121/ad0349","DOIUrl":null,"url":null,"abstract":"Abstract The covariant derivative suitable for differentiating and parallel transporting tangent vectors and other geometric objects induced by a parameter-dependent adiabatic quantum eigenstate is introduced. It is proved to be covariant under gauge and coordinate transformations and compatible with the quantum geometric tensor. For a quantum system driven by a Hamiltonian $H=H(x)$ depending on slowly-varying parameters $x=\\{x_1(\\epsilon t),x_2(\\epsilon t),\\ldots\\}$, $\\epsilon\\ll 1$, the quantum covariant derivative is used to derive a recurrence relation that determines an asymptotic series for the wave function to all orders in $\\epsilon$. This adiabatic perturbation theory provides an efficient tool for calculating nonlinear response properties.
","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum covariant derivative: a tool for deriving adiabatic perturbation theory to all orders\",\"authors\":\"Ryan Requist\",\"doi\":\"10.1088/1751-8121/ad0349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The covariant derivative suitable for differentiating and parallel transporting tangent vectors and other geometric objects induced by a parameter-dependent adiabatic quantum eigenstate is introduced. It is proved to be covariant under gauge and coordinate transformations and compatible with the quantum geometric tensor. For a quantum system driven by a Hamiltonian $H=H(x)$ depending on slowly-varying parameters $x=\\\\{x_1(\\\\epsilon t),x_2(\\\\epsilon t),\\\\ldots\\\\}$, $\\\\epsilon\\\\ll 1$, the quantum covariant derivative is used to derive a recurrence relation that determines an asymptotic series for the wave function to all orders in $\\\\epsilon$. This adiabatic perturbation theory provides an efficient tool for calculating nonlinear response properties.
\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad0349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要介绍了由参数相关绝热量子本征态导出的协变导数,适用于微分和平行切矢量及其他几何对象。证明了它在规范变换和坐标变换下是协变的,并且与量子几何张量相容。对于由哈密顿量H=H(x)$驱动的量子系统,依赖于慢变参数$x=\{x_1(\epsilon t),x_2(\epsilon t),\ldots\}$, $\epsilon\ll 1$,量子协变导数用于推导递推关系,该递推关系决定了波函数在$\epsilon$中所有阶的渐近级数。这种绝热微扰理论为计算非线性响应特性提供了一种有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum covariant derivative: a tool for deriving adiabatic perturbation theory to all orders
Abstract The covariant derivative suitable for differentiating and parallel transporting tangent vectors and other geometric objects induced by a parameter-dependent adiabatic quantum eigenstate is introduced. It is proved to be covariant under gauge and coordinate transformations and compatible with the quantum geometric tensor. For a quantum system driven by a Hamiltonian $H=H(x)$ depending on slowly-varying parameters $x=\{x_1(\epsilon t),x_2(\epsilon t),\ldots\}$, $\epsilon\ll 1$, the quantum covariant derivative is used to derive a recurrence relation that determines an asymptotic series for the wave function to all orders in $\epsilon$. This adiabatic perturbation theory provides an efficient tool for calculating nonlinear response properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信