各种莱布尼兹代数的矩映射

IF 1.2 2区 数学 Q1 MATHEMATICS
Zhiqi Chen, Saiyu Wang, Hui Zhang
{"title":"各种莱布尼兹代数的矩映射","authors":"Zhiqi Chen, Saiyu Wang, Hui Zhang","doi":"10.1142/s0219199723500438","DOIUrl":null,"url":null,"abstract":"We consider the moment map $m:\\mathbb{P}V_n\\rightarrow \\text{i}\\mathfrak{u}(n)$ for the action of $\\text{GL}(n)$ on $V_n=\\otimes^{2}(\\mathbb{C}^{n})^{*}\\otimes\\mathbb{C}^{n}$, and study the functional $F_n=\\|m\\|^{2}$ restricted to the projectivizations of the algebraic varieties of all $n$-dimensional Leibniz algebras $L_n$ and all $n$-dimensional symmetric Leibniz algebras $S_n$, respectively. Firstly, we give a description of the maxima and minima of the functional $F_n: L_n \\rightarrow \\mathbb{R}$, proving that they are actually attained at the symmetric Leibniz algebras. Then, for an arbitrary critical point $[\\mu]$ of $F_n: S_n \\rightarrow \\mathbb{R}$, we characterize the structure of $[\\mu]$ by virtue of the nonnegative rationality. Finally, we classify the critical points of $F_n: S_n \\rightarrow \\mathbb{R}$ for $n=2$, $3$, respectively.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"144 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The moment map for the variety of Leibniz algebras\",\"authors\":\"Zhiqi Chen, Saiyu Wang, Hui Zhang\",\"doi\":\"10.1142/s0219199723500438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the moment map $m:\\\\mathbb{P}V_n\\\\rightarrow \\\\text{i}\\\\mathfrak{u}(n)$ for the action of $\\\\text{GL}(n)$ on $V_n=\\\\otimes^{2}(\\\\mathbb{C}^{n})^{*}\\\\otimes\\\\mathbb{C}^{n}$, and study the functional $F_n=\\\\|m\\\\|^{2}$ restricted to the projectivizations of the algebraic varieties of all $n$-dimensional Leibniz algebras $L_n$ and all $n$-dimensional symmetric Leibniz algebras $S_n$, respectively. Firstly, we give a description of the maxima and minima of the functional $F_n: L_n \\\\rightarrow \\\\mathbb{R}$, proving that they are actually attained at the symmetric Leibniz algebras. Then, for an arbitrary critical point $[\\\\mu]$ of $F_n: S_n \\\\rightarrow \\\\mathbb{R}$, we characterize the structure of $[\\\\mu]$ by virtue of the nonnegative rationality. Finally, we classify the critical points of $F_n: S_n \\\\rightarrow \\\\mathbb{R}$ for $n=2$, $3$, respectively.\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500438\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219199723500438","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The moment map for the variety of Leibniz algebras
We consider the moment map $m:\mathbb{P}V_n\rightarrow \text{i}\mathfrak{u}(n)$ for the action of $\text{GL}(n)$ on $V_n=\otimes^{2}(\mathbb{C}^{n})^{*}\otimes\mathbb{C}^{n}$, and study the functional $F_n=\|m\|^{2}$ restricted to the projectivizations of the algebraic varieties of all $n$-dimensional Leibniz algebras $L_n$ and all $n$-dimensional symmetric Leibniz algebras $S_n$, respectively. Firstly, we give a description of the maxima and minima of the functional $F_n: L_n \rightarrow \mathbb{R}$, proving that they are actually attained at the symmetric Leibniz algebras. Then, for an arbitrary critical point $[\mu]$ of $F_n: S_n \rightarrow \mathbb{R}$, we characterize the structure of $[\mu]$ by virtue of the nonnegative rationality. Finally, we classify the critical points of $F_n: S_n \rightarrow \mathbb{R}$ for $n=2$, $3$, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信