{"title":"反pre- lie双代数和反pre- lie -Poisson双代数的转置泊松代数双代数理论","authors":"Guilai Liu, Chengming Bai","doi":"10.1142/s0219199723500505","DOIUrl":null,"url":null,"abstract":"The approach for Poisson bialgebras characterized by Manin triples with respect to the invariant bilinear forms on both the commutative associative algebras and the Lie algebras is not available for giving a bialgebra theory for transposed Poisson algebras. Alternatively, we consider Manin triples with respect to the commutative 2-cocycles on the Lie algebras instead. Explicitly, we first introduce the notion of anti-pre-Lie bialgebras as the equivalent structure of Manin triples of Lie algebras with respect to the commutative 2-cocycles. Then we introduce the notion of anti-pre-Lie Poisson bialgebras, characterized by Manin triples of transposed Poisson algebras with respect to the bilinear forms which are invariant on the commutative associative algebras and commutative 2-cocycles on the Lie algebras, giving a bialgebra theory for transposed Poisson algebras. Finally the coboundary cases and the related structures such as analogues of the classical Yang-Baxter equation and $\\mathcal O$-operators are studied.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"7 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A bialgebra theory for transposed Poisson algebras via anti-pre-Lie bialgebras and anti-pre-Lie-Poisson bialgebras\",\"authors\":\"Guilai Liu, Chengming Bai\",\"doi\":\"10.1142/s0219199723500505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The approach for Poisson bialgebras characterized by Manin triples with respect to the invariant bilinear forms on both the commutative associative algebras and the Lie algebras is not available for giving a bialgebra theory for transposed Poisson algebras. Alternatively, we consider Manin triples with respect to the commutative 2-cocycles on the Lie algebras instead. Explicitly, we first introduce the notion of anti-pre-Lie bialgebras as the equivalent structure of Manin triples of Lie algebras with respect to the commutative 2-cocycles. Then we introduce the notion of anti-pre-Lie Poisson bialgebras, characterized by Manin triples of transposed Poisson algebras with respect to the bilinear forms which are invariant on the commutative associative algebras and commutative 2-cocycles on the Lie algebras, giving a bialgebra theory for transposed Poisson algebras. Finally the coboundary cases and the related structures such as analogues of the classical Yang-Baxter equation and $\\\\mathcal O$-operators are studied.\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500505\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219199723500505","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A bialgebra theory for transposed Poisson algebras via anti-pre-Lie bialgebras and anti-pre-Lie-Poisson bialgebras
The approach for Poisson bialgebras characterized by Manin triples with respect to the invariant bilinear forms on both the commutative associative algebras and the Lie algebras is not available for giving a bialgebra theory for transposed Poisson algebras. Alternatively, we consider Manin triples with respect to the commutative 2-cocycles on the Lie algebras instead. Explicitly, we first introduce the notion of anti-pre-Lie bialgebras as the equivalent structure of Manin triples of Lie algebras with respect to the commutative 2-cocycles. Then we introduce the notion of anti-pre-Lie Poisson bialgebras, characterized by Manin triples of transposed Poisson algebras with respect to the bilinear forms which are invariant on the commutative associative algebras and commutative 2-cocycles on the Lie algebras, giving a bialgebra theory for transposed Poisson algebras. Finally the coboundary cases and the related structures such as analogues of the classical Yang-Baxter equation and $\mathcal O$-operators are studied.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.