{"title":"具有自由边界的西尼罗病毒模型解的尖锐渐近轮廓","authors":"Zhiguo Wang, Hua Nie, Yihong Du","doi":"10.1017/s0956792523000281","DOIUrl":null,"url":null,"abstract":"Abstract We consider the long-time behaviour of a West Nile virus (WNv) model consisting of a reaction–diffusion system with free boundaries. Such a model describes the spreading of WNv with the free boundary representing the expanding front of the infected region, which is a time-dependent interval $[g(t), h(t)]$ in the model (Lin and Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75, 1381–1409, 2017). The asymptotic spreading speed of the front has been determined in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019) by making use of the associated semi-wave solution, namely $\\lim _{t\\to \\infty } h(t)/t=\\lim _{t\\to \\infty }[\\!-g(t)/t]=c_\\nu$ , with $c_\\nu$ the speed of the semi-wave solution. In this paper, by employing new techniques, we significantly improve the estimate in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019): we show that $h(t)-c_\\nu t$ and $g(t)+c_\\nu t$ converge to some constants as $t\\to \\infty$ , and the solution of the model converges to the semi-wave solution. The results also apply to a wide class of analogous Ross–MacDonold epidemic models.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"10 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp asymptotic profile of the solution to a West Nile virus model with free boundary\",\"authors\":\"Zhiguo Wang, Hua Nie, Yihong Du\",\"doi\":\"10.1017/s0956792523000281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the long-time behaviour of a West Nile virus (WNv) model consisting of a reaction–diffusion system with free boundaries. Such a model describes the spreading of WNv with the free boundary representing the expanding front of the infected region, which is a time-dependent interval $[g(t), h(t)]$ in the model (Lin and Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75, 1381–1409, 2017). The asymptotic spreading speed of the front has been determined in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019) by making use of the associated semi-wave solution, namely $\\\\lim _{t\\\\to \\\\infty } h(t)/t=\\\\lim _{t\\\\to \\\\infty }[\\\\!-g(t)/t]=c_\\\\nu$ , with $c_\\\\nu$ the speed of the semi-wave solution. In this paper, by employing new techniques, we significantly improve the estimate in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019): we show that $h(t)-c_\\\\nu t$ and $g(t)+c_\\\\nu t$ converge to some constants as $t\\\\to \\\\infty$ , and the solution of the model converges to the semi-wave solution. The results also apply to a wide class of analogous Ross–MacDonold epidemic models.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792523000281\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0956792523000281","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sharp asymptotic profile of the solution to a West Nile virus model with free boundary
Abstract We consider the long-time behaviour of a West Nile virus (WNv) model consisting of a reaction–diffusion system with free boundaries. Such a model describes the spreading of WNv with the free boundary representing the expanding front of the infected region, which is a time-dependent interval $[g(t), h(t)]$ in the model (Lin and Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75, 1381–1409, 2017). The asymptotic spreading speed of the front has been determined in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019) by making use of the associated semi-wave solution, namely $\lim _{t\to \infty } h(t)/t=\lim _{t\to \infty }[\!-g(t)/t]=c_\nu$ , with $c_\nu$ the speed of the semi-wave solution. In this paper, by employing new techniques, we significantly improve the estimate in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019): we show that $h(t)-c_\nu t$ and $g(t)+c_\nu t$ converge to some constants as $t\to \infty$ , and the solution of the model converges to the semi-wave solution. The results also apply to a wide class of analogous Ross–MacDonold epidemic models.
期刊介绍:
Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.