Lina Zhan , Yuzhibiao Xia , Xuan Zhang , Yao Liu , Shaojun Liu
{"title":"立体光刻工艺参数对氮化硅陶瓷浆料固化性能的影响","authors":"Lina Zhan , Yuzhibiao Xia , Xuan Zhang , Yao Liu , Shaojun Liu","doi":"10.1016/j.cjmeam.2023.100095","DOIUrl":null,"url":null,"abstract":"<div><p>This paper systematically investigates the effects of process parameters, such as exposure time and slice thickness, on the polymerization kinetics of a Si<sub>3</sub>N<sub>4</sub> ceramic slurry. The higher the C<img>C conversion rate in the SLA process, the faster the polymerization rate in the slurry during the initial exposure. However, when the UV exposure time is increased from 5 to 20 s, the solidified gel in the slurry hinders the diffusion of free radicals, causing the C<img>C conversion rate to stop. The slurry achieves a C<img>C conversion rate of up to 81% and a curing dimensional accuracy of up to IT7 level at an exposure time of 10 s. When the penetration depth of the slurry is equal to the slice thickness, the difference in C<img>C conversion rates between the ends of the blank is at least 21%. Furthermore, the Si<sub>3</sub>N<sub>4</sub> ceramics processed by stereolithography exhibit no defects, such as warpage or holes.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"2 4","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277266572300034X/pdfft?md5=e0118ac77a658d9426b1903c1a5b7344&pid=1-s2.0-S277266572300034X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of Stereolithography Process Parameters on the Curing Properties of Si3N4 Ceramic Slurries\",\"authors\":\"Lina Zhan , Yuzhibiao Xia , Xuan Zhang , Yao Liu , Shaojun Liu\",\"doi\":\"10.1016/j.cjmeam.2023.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper systematically investigates the effects of process parameters, such as exposure time and slice thickness, on the polymerization kinetics of a Si<sub>3</sub>N<sub>4</sub> ceramic slurry. The higher the C<img>C conversion rate in the SLA process, the faster the polymerization rate in the slurry during the initial exposure. However, when the UV exposure time is increased from 5 to 20 s, the solidified gel in the slurry hinders the diffusion of free radicals, causing the C<img>C conversion rate to stop. The slurry achieves a C<img>C conversion rate of up to 81% and a curing dimensional accuracy of up to IT7 level at an exposure time of 10 s. When the penetration depth of the slurry is equal to the slice thickness, the difference in C<img>C conversion rates between the ends of the blank is at least 21%. Furthermore, the Si<sub>3</sub>N<sub>4</sub> ceramics processed by stereolithography exhibit no defects, such as warpage or holes.</p></div>\",\"PeriodicalId\":100243,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"volume\":\"2 4\",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277266572300034X/pdfft?md5=e0118ac77a658d9426b1903c1a5b7344&pid=1-s2.0-S277266572300034X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277266572300034X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277266572300034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Stereolithography Process Parameters on the Curing Properties of Si3N4 Ceramic Slurries
This paper systematically investigates the effects of process parameters, such as exposure time and slice thickness, on the polymerization kinetics of a Si3N4 ceramic slurry. The higher the CC conversion rate in the SLA process, the faster the polymerization rate in the slurry during the initial exposure. However, when the UV exposure time is increased from 5 to 20 s, the solidified gel in the slurry hinders the diffusion of free radicals, causing the CC conversion rate to stop. The slurry achieves a CC conversion rate of up to 81% and a curing dimensional accuracy of up to IT7 level at an exposure time of 10 s. When the penetration depth of the slurry is equal to the slice thickness, the difference in CC conversion rates between the ends of the blank is at least 21%. Furthermore, the Si3N4 ceramics processed by stereolithography exhibit no defects, such as warpage or holes.