{"title":"农业食品工业中综合收获和工艺规划模型的优化","authors":"Bilge Bilgen , Tuğçe Taşkıner","doi":"10.1016/j.jer.2023.09.036","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an integrated harvest and production planning problem in the olive oil industry is addressed. The aim of the paper is to develop and optimize a mathematical model that integrates both olive harvest and olive oil production process. The objective is to maximize the total profit while determining quantity of olives harvested from several olive groves, quantity of olives purchased from external farmers, quantity of olive oil produced, and by-product management to handle hazardous effects of olive oil production. The problem is formulated as a mixed integer linear programming model (MILP). Maximization of profit consists of two components; total sales revenue and total cost including harvesting, purchasing, fixed and variable processing costs. Constraints on the system include harvest planning, harvest capacity, production planning, and processing constraints. The proposed MILP model incorporates several distinguishing characteristics of the problem such as ripeness of olives, olive oil quality, organic and conventional farming, and by-product management. A numerical experiment based on a real-world case study was presented to verify the effectiveness of the developed model. The results show that simultaneously considering harvesting and production processes can significantly assist the profitability of the olive oil supply chain. A scenario analysis is conducted by extending the base model to explore olive loss in the olive groves which can occur due to the severe climatic conditions.</div></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":"13 1","pages":"Pages 331-350"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of an integrated harvest, and process planning model in the agri-food industry\",\"authors\":\"Bilge Bilgen , Tuğçe Taşkıner\",\"doi\":\"10.1016/j.jer.2023.09.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, an integrated harvest and production planning problem in the olive oil industry is addressed. The aim of the paper is to develop and optimize a mathematical model that integrates both olive harvest and olive oil production process. The objective is to maximize the total profit while determining quantity of olives harvested from several olive groves, quantity of olives purchased from external farmers, quantity of olive oil produced, and by-product management to handle hazardous effects of olive oil production. The problem is formulated as a mixed integer linear programming model (MILP). Maximization of profit consists of two components; total sales revenue and total cost including harvesting, purchasing, fixed and variable processing costs. Constraints on the system include harvest planning, harvest capacity, production planning, and processing constraints. The proposed MILP model incorporates several distinguishing characteristics of the problem such as ripeness of olives, olive oil quality, organic and conventional farming, and by-product management. A numerical experiment based on a real-world case study was presented to verify the effectiveness of the developed model. The results show that simultaneously considering harvesting and production processes can significantly assist the profitability of the olive oil supply chain. A scenario analysis is conducted by extending the base model to explore olive loss in the olive groves which can occur due to the severe climatic conditions.</div></div>\",\"PeriodicalId\":48803,\"journal\":{\"name\":\"Journal of Engineering Research\",\"volume\":\"13 1\",\"pages\":\"Pages 331-350\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307187723002791\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187723002791","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of an integrated harvest, and process planning model in the agri-food industry
In this paper, an integrated harvest and production planning problem in the olive oil industry is addressed. The aim of the paper is to develop and optimize a mathematical model that integrates both olive harvest and olive oil production process. The objective is to maximize the total profit while determining quantity of olives harvested from several olive groves, quantity of olives purchased from external farmers, quantity of olive oil produced, and by-product management to handle hazardous effects of olive oil production. The problem is formulated as a mixed integer linear programming model (MILP). Maximization of profit consists of two components; total sales revenue and total cost including harvesting, purchasing, fixed and variable processing costs. Constraints on the system include harvest planning, harvest capacity, production planning, and processing constraints. The proposed MILP model incorporates several distinguishing characteristics of the problem such as ripeness of olives, olive oil quality, organic and conventional farming, and by-product management. A numerical experiment based on a real-world case study was presented to verify the effectiveness of the developed model. The results show that simultaneously considering harvesting and production processes can significantly assist the profitability of the olive oil supply chain. A scenario analysis is conducted by extending the base model to explore olive loss in the olive groves which can occur due to the severe climatic conditions.
期刊介绍:
Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).