{"title":"低增益雪崩二极管中子和质子辐照后增益层退化研究","authors":"E. Currás Rivera, A. La Rosa, M. Moll, F. Zareef","doi":"10.1088/1748-0221/18/10/p10020","DOIUrl":null,"url":null,"abstract":"Abstract The high-luminosity upgrade of the ATLAS and CMS experiments includes dedicated sub-detectors to perform the time-stamping of minimum ionizing particles (MIPs). These detectors will be exposed up to fluences in the range of 1.5-2.5 × 10 15 n eq /cm 2 at the end of their lifetime and, Low Gain Avalanche Diode (LGAD) has been chosen as their baseline detection technology. To better understand the performance of LGAD detectors in these environments, a gain layer degradation study after neutron and proton irradiations up to a fluence of 1.5 × 10 15 n eq /cm 2 was performed. LGADs manufactured at Hamamatsu Photonics (HPK) and Centro Nacional de Microelectrónica (CNM-IMB) were chosen for this study and, a comparison in the gain layer degradation after exposure to reactor neutrons at the Jožef Stefan Institute (JSI) in Ljubjana and 24 GeV/c protons at the CERN-PS is presented here.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"147 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gain layer degradation study after neutron and proton irradiations in Low Gain Avalanche Diodes\",\"authors\":\"E. Currás Rivera, A. La Rosa, M. Moll, F. Zareef\",\"doi\":\"10.1088/1748-0221/18/10/p10020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The high-luminosity upgrade of the ATLAS and CMS experiments includes dedicated sub-detectors to perform the time-stamping of minimum ionizing particles (MIPs). These detectors will be exposed up to fluences in the range of 1.5-2.5 × 10 15 n eq /cm 2 at the end of their lifetime and, Low Gain Avalanche Diode (LGAD) has been chosen as their baseline detection technology. To better understand the performance of LGAD detectors in these environments, a gain layer degradation study after neutron and proton irradiations up to a fluence of 1.5 × 10 15 n eq /cm 2 was performed. LGADs manufactured at Hamamatsu Photonics (HPK) and Centro Nacional de Microelectrónica (CNM-IMB) were chosen for this study and, a comparison in the gain layer degradation after exposure to reactor neutrons at the Jožef Stefan Institute (JSI) in Ljubjana and 24 GeV/c protons at the CERN-PS is presented here.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/10/p10020\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/10/p10020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
摘要
ATLAS和CMS实验的高亮度升级包括专用子探测器来执行最小电离粒子(MIPs)的时间戳。这些探测器将暴露在1.5-2.5 × 10 15 n eq / cm2的影响范围内,在其寿命结束时,低增益雪崩二极管(LGAD)已被选择作为其基线检测技术。为了更好地了解LGAD探测器在这些环境中的性能,进行了中子和质子辐照后增益层退化的研究,辐照的影响可达1.5 × 10 15 n eq / cm2。本研究选择了滨松光子(HPK)和国家中心Microelectrónica (CNM-IMB)制造的LGADs,并比较了在卢比雅那Jožef Stefan研究所(JSI)的反应堆中子和在CERN-PS的24 GeV/c质子照射后的增益层退化情况。
Gain layer degradation study after neutron and proton irradiations in Low Gain Avalanche Diodes
Abstract The high-luminosity upgrade of the ATLAS and CMS experiments includes dedicated sub-detectors to perform the time-stamping of minimum ionizing particles (MIPs). These detectors will be exposed up to fluences in the range of 1.5-2.5 × 10 15 n eq /cm 2 at the end of their lifetime and, Low Gain Avalanche Diode (LGAD) has been chosen as their baseline detection technology. To better understand the performance of LGAD detectors in these environments, a gain layer degradation study after neutron and proton irradiations up to a fluence of 1.5 × 10 15 n eq /cm 2 was performed. LGADs manufactured at Hamamatsu Photonics (HPK) and Centro Nacional de Microelectrónica (CNM-IMB) were chosen for this study and, a comparison in the gain layer degradation after exposure to reactor neutrons at the Jožef Stefan Institute (JSI) in Ljubjana and 24 GeV/c protons at the CERN-PS is presented here.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.