不严格的点式吸引子

Pub Date : 2024-01-01 DOI:10.1016/j.indag.2023.10.002
Magdalena Nowak
{"title":"不严格的点式吸引子","authors":"Magdalena Nowak","doi":"10.1016/j.indag.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>We deal with the finite family <span><math><mi>F</mi></math></span><span> of continuous maps on the Hausdorff space </span><span><math><mi>X</mi></math></span><span>. A nonempty compact subset </span><span><math><mi>A</mi></math></span><span> of such space is called a strict attractor if it has an open neighborhood </span><span><math><mi>U</mi></math></span> such that <span><math><mrow><mi>A</mi><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> for every nonempty compact <span><math><mrow><mi>S</mi><mo>⊂</mo><mi>U</mi></mrow></math></span><span>. Every strict attractor is a pointwise attractor, which means that the set </span><span><math><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>;</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>A</mi><mo>}</mo></mrow></math></span> contains <span><math><mi>A</mi></math></span> in its interior.</p><p>We present a class of examples of pointwise attractors – from the finite set to the Sierpiński carpet – which are not strict when we add to the system one nonexpansive map.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise attractors which are not strict\",\"authors\":\"Magdalena Nowak\",\"doi\":\"10.1016/j.indag.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We deal with the finite family <span><math><mi>F</mi></math></span><span> of continuous maps on the Hausdorff space </span><span><math><mi>X</mi></math></span><span>. A nonempty compact subset </span><span><math><mi>A</mi></math></span><span> of such space is called a strict attractor if it has an open neighborhood </span><span><math><mi>U</mi></math></span> such that <span><math><mrow><mi>A</mi><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> for every nonempty compact <span><math><mrow><mi>S</mi><mo>⊂</mo><mi>U</mi></mrow></math></span><span>. Every strict attractor is a pointwise attractor, which means that the set </span><span><math><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>;</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>A</mi><mo>}</mo></mrow></math></span> contains <span><math><mi>A</mi></math></span> in its interior.</p><p>We present a class of examples of pointwise attractors – from the finite set to the Sierpiński carpet – which are not strict when we add to the system one nonexpansive map.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们处理的是豪斯多夫空间 X 上连续映射的有限族 F。如果该空间的非空紧凑子集 A 有一个开放邻域 U,使得对于每个非空紧凑 S⊂U,A=limn→∞Fn(S),则该子集称为严格吸引子。每个严格吸引子都是点式吸引子,这意味着集合{x∈X;limn→∞Fn(x)=A}的内部包含A。我们提出了一类点式吸引子的例子--从有限集到西尔潘斯基地毯--当我们在系统中加入一个非膨胀映射时,这些吸引子就不是严格的了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Pointwise attractors which are not strict

We deal with the finite family F of continuous maps on the Hausdorff space X. A nonempty compact subset A of such space is called a strict attractor if it has an open neighborhood U such that A=limnFn(S) for every nonempty compact SU. Every strict attractor is a pointwise attractor, which means that the set {xX;limnFn(x)=A} contains A in its interior.

We present a class of examples of pointwise attractors – from the finite set to the Sierpiński carpet – which are not strict when we add to the system one nonexpansive map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信