不同电离层条件下中国GNSS - GIM和IRI - 2020模式的比较

IF 3.8 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Rong He, Min Li, Qiang Zhang, Qile Zhao
{"title":"不同电离层条件下中国GNSS - GIM和IRI - 2020模式的比较","authors":"Rong He, Min Li, Qiang Zhang, Qile Zhao","doi":"10.1029/2023sw003646","DOIUrl":null,"url":null,"abstract":"Abstract The ionosphere is a crucial factor affecting Global Navigation Satellite System positioning. The Global Ionosphere Map (GIM) or the International Reference Ionosphere (IRI) model can be used for regional ionospheric correction. Since southern China is located near the electron density equatorial anomaly, this study evaluates the performance of the Wuhan University GIM (WHU‐GIM) and the IRI‐2020 from 2008 to 2020 over the China region. The comparison indicates that the Total Electron Content (TEC) from IRI‐2020 is lower than that from WHU‐GIM overall, the discrepancy is more obvious in high solar conditions and low‐latitude regions. The differential Slant TEC (dSTEC) during a phase‐arc with about 0.1 TECU accuracy derived from Global Positioning System (GPS) observations is used for model validation, the results show that the accuracies of WHU‐GIM and IRI‐2020 are 3.14 and 4.57 TECU, respectively. The dSTEC error is larger at low latitudes and decreases with increasing latitude. GPS‐derived TEC is taken for reference to evaluate the model reliability. Results show that both models can reproduce the diurnal TEC variations, but IRI‐2020 is more influenced by geomagnetic activities. The TEC correction percentage for IRI‐2020 is about 60%–80% under different ionospheric conditions, while for WHU‐GIM is 80%–90%. The Single‐Frequency Precise Point Positioning is performed with the ionosphere delay corrected by the two models, respectively. The positioning errors show that using IRI‐2020 has a lower accuracy, and the TEC discrepancy of the IRI‐2020 can cause a large bias in the up direction, especially at low‐latitude regions.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of a GNSS‐GIM and the IRI‐2020 Model Over China Under Different Ionospheric Conditions\",\"authors\":\"Rong He, Min Li, Qiang Zhang, Qile Zhao\",\"doi\":\"10.1029/2023sw003646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The ionosphere is a crucial factor affecting Global Navigation Satellite System positioning. The Global Ionosphere Map (GIM) or the International Reference Ionosphere (IRI) model can be used for regional ionospheric correction. Since southern China is located near the electron density equatorial anomaly, this study evaluates the performance of the Wuhan University GIM (WHU‐GIM) and the IRI‐2020 from 2008 to 2020 over the China region. The comparison indicates that the Total Electron Content (TEC) from IRI‐2020 is lower than that from WHU‐GIM overall, the discrepancy is more obvious in high solar conditions and low‐latitude regions. The differential Slant TEC (dSTEC) during a phase‐arc with about 0.1 TECU accuracy derived from Global Positioning System (GPS) observations is used for model validation, the results show that the accuracies of WHU‐GIM and IRI‐2020 are 3.14 and 4.57 TECU, respectively. The dSTEC error is larger at low latitudes and decreases with increasing latitude. GPS‐derived TEC is taken for reference to evaluate the model reliability. Results show that both models can reproduce the diurnal TEC variations, but IRI‐2020 is more influenced by geomagnetic activities. The TEC correction percentage for IRI‐2020 is about 60%–80% under different ionospheric conditions, while for WHU‐GIM is 80%–90%. The Single‐Frequency Precise Point Positioning is performed with the ionosphere delay corrected by the two models, respectively. The positioning errors show that using IRI‐2020 has a lower accuracy, and the TEC discrepancy of the IRI‐2020 can cause a large bias in the up direction, especially at low‐latitude regions.\",\"PeriodicalId\":49487,\"journal\":{\"name\":\"Space Weather-The International Journal of Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather-The International Journal of Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023sw003646\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather-The International Journal of Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023sw003646","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

电离层是影响全球卫星导航系统定位的关键因素。全球电离层图(GIM)或国际参考电离层模式(IRI)可用于区域电离层校正。由于中国南方位于电子密度赤道异常附近,本研究评估了2008 - 2020年武汉大学GIM (WHU - GIM)和IRI - 2020在中国地区的表现。结果表明,IRI‐2020的总电子含量(TEC)总体上低于WHU‐GIM的总电子含量(TEC),在高太阳条件和低纬度地区差异更为明显。利用全球定位系统(GPS)观测数据在相位弧期间的差分倾斜TEC (dSTEC)精度约为0.1 TECU进行模型验证,结果表明,WHU - GIM和IRI - 2020的精度分别为3.14和4.57 TECU。dSTEC误差在低纬度较大,随纬度的增加而减小。采用GPS衍生的TEC作为参考来评估模型的可靠性。结果表明,两种模式都能再现TEC的日变化,但IRI‐2020受地磁活动的影响更大。不同电离层条件下,IRI‐2020的TEC校正率约为60% ~ 80%,而WHU‐GIM的TEC校正率为80% ~ 90%。利用两种模型分别校正的电离层延迟进行了单频精确点定位。定位误差表明,IRI - 2020的精度较低,且在低纬度地区,IRI - 2020的TEC差异会造成较大的向上偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of a GNSS‐GIM and the IRI‐2020 Model Over China Under Different Ionospheric Conditions
Abstract The ionosphere is a crucial factor affecting Global Navigation Satellite System positioning. The Global Ionosphere Map (GIM) or the International Reference Ionosphere (IRI) model can be used for regional ionospheric correction. Since southern China is located near the electron density equatorial anomaly, this study evaluates the performance of the Wuhan University GIM (WHU‐GIM) and the IRI‐2020 from 2008 to 2020 over the China region. The comparison indicates that the Total Electron Content (TEC) from IRI‐2020 is lower than that from WHU‐GIM overall, the discrepancy is more obvious in high solar conditions and low‐latitude regions. The differential Slant TEC (dSTEC) during a phase‐arc with about 0.1 TECU accuracy derived from Global Positioning System (GPS) observations is used for model validation, the results show that the accuracies of WHU‐GIM and IRI‐2020 are 3.14 and 4.57 TECU, respectively. The dSTEC error is larger at low latitudes and decreases with increasing latitude. GPS‐derived TEC is taken for reference to evaluate the model reliability. Results show that both models can reproduce the diurnal TEC variations, but IRI‐2020 is more influenced by geomagnetic activities. The TEC correction percentage for IRI‐2020 is about 60%–80% under different ionospheric conditions, while for WHU‐GIM is 80%–90%. The Single‐Frequency Precise Point Positioning is performed with the ionosphere delay corrected by the two models, respectively. The positioning errors show that using IRI‐2020 has a lower accuracy, and the TEC discrepancy of the IRI‐2020 can cause a large bias in the up direction, especially at low‐latitude regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
29.70%
发文量
166
审稿时长
>12 weeks
期刊介绍: Space Weather: The International Journal of Research and Applications (SWE) is devoted to understanding and forecasting space weather. The scope of understanding and forecasting includes: origins, propagation and interactions of solar-produced processes within geospace; interactions in Earth’s space-atmosphere interface region produced by disturbances from above and below; influences of cosmic rays on humans, hardware, and signals; and comparisons of these types of interactions and influences with the atmospheres of neighboring planets and Earth’s moon. Manuscripts should emphasize impacts on technical systems including telecommunications, transportation, electric power, satellite navigation, avionics/spacecraft design and operations, human spaceflight, and other systems. Manuscripts that describe models or space environment climatology should clearly state how the results can be applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信