{"title":"使用上下文摘要和领域模式的零射击可推广的端到端面向任务的对话系统","authors":"Adib Mosharrof, M.H. Maqbool, A.B. Siddique","doi":"10.32473/flairs.36.133072","DOIUrl":null,"url":null,"abstract":"Task-oriented dialog systems empower users to accom-plish their goals by facilitating intuitive and expres-sive natural language interactions. State-of-the-art ap-proaches in task-oriented dialog systems formulate theproblem as a conditional sequence generation task andfine-tune pre-trained causal language models in the su-pervised setting. This requires labeled training datafor each new domain or task, and acquiring such datais prohibitively laborious and expensive, thus makingit a bottleneck for scaling systems to a wide rangeof domains. To overcome this challenge, we intro-duce a novel Zero-Shot generalizable end-to-end Task-oriented Dialog system, ZS-ToD, that leverages domainschemas to allow for robust generalization to unseen do-mains and exploits effective summarization of the dia-log history. We employ GPT-2 as a backbone model andintroduce a two-step training process where the goal ofthe first step is to learn the general structure of the dialogdata and the second step optimizes the response gen-eration as well as intermediate outputs, such as dialogstate and system actions. As opposed to state-of-the-artsystems that are trained to fulfill certain intents in thegiven domains and memorize task-specific conversa-tional patterns, ZS-ToD learns generic task-completionskills by comprehending domain semantics via domainschemas and generalizing to unseen domains seam-lessly. We conduct an extensive experimental evaluationon SGD and SGD-X datasets that span up to 20 uniquedomains and ZS-ToD outperforms state-of-the-art sys-tems on key metrics, with an improvement of +17% onjoint goal accuracy and +5 on inform. Additionally,we present a detailed ablation study to demonstrate theeffectiveness of the proposed components and trainingmechanism.","PeriodicalId":498209,"journal":{"name":"Proceedings of the ... International Florida Artificial Intelligence Research Society Conference","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Shot Generalizable End-to-End Task-Oriented Dialog System using Context Summarization and Domain Schema\",\"authors\":\"Adib Mosharrof, M.H. Maqbool, A.B. Siddique\",\"doi\":\"10.32473/flairs.36.133072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task-oriented dialog systems empower users to accom-plish their goals by facilitating intuitive and expres-sive natural language interactions. State-of-the-art ap-proaches in task-oriented dialog systems formulate theproblem as a conditional sequence generation task andfine-tune pre-trained causal language models in the su-pervised setting. This requires labeled training datafor each new domain or task, and acquiring such datais prohibitively laborious and expensive, thus makingit a bottleneck for scaling systems to a wide rangeof domains. To overcome this challenge, we intro-duce a novel Zero-Shot generalizable end-to-end Task-oriented Dialog system, ZS-ToD, that leverages domainschemas to allow for robust generalization to unseen do-mains and exploits effective summarization of the dia-log history. We employ GPT-2 as a backbone model andintroduce a two-step training process where the goal ofthe first step is to learn the general structure of the dialogdata and the second step optimizes the response gen-eration as well as intermediate outputs, such as dialogstate and system actions. As opposed to state-of-the-artsystems that are trained to fulfill certain intents in thegiven domains and memorize task-specific conversa-tional patterns, ZS-ToD learns generic task-completionskills by comprehending domain semantics via domainschemas and generalizing to unseen domains seam-lessly. We conduct an extensive experimental evaluationon SGD and SGD-X datasets that span up to 20 uniquedomains and ZS-ToD outperforms state-of-the-art sys-tems on key metrics, with an improvement of +17% onjoint goal accuracy and +5 on inform. Additionally,we present a detailed ablation study to demonstrate theeffectiveness of the proposed components and trainingmechanism.\",\"PeriodicalId\":498209,\"journal\":{\"name\":\"Proceedings of the ... International Florida Artificial Intelligence Research Society Conference\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Florida Artificial Intelligence Research Society Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Florida Artificial Intelligence Research Society Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-Shot Generalizable End-to-End Task-Oriented Dialog System using Context Summarization and Domain Schema
Task-oriented dialog systems empower users to accom-plish their goals by facilitating intuitive and expres-sive natural language interactions. State-of-the-art ap-proaches in task-oriented dialog systems formulate theproblem as a conditional sequence generation task andfine-tune pre-trained causal language models in the su-pervised setting. This requires labeled training datafor each new domain or task, and acquiring such datais prohibitively laborious and expensive, thus makingit a bottleneck for scaling systems to a wide rangeof domains. To overcome this challenge, we intro-duce a novel Zero-Shot generalizable end-to-end Task-oriented Dialog system, ZS-ToD, that leverages domainschemas to allow for robust generalization to unseen do-mains and exploits effective summarization of the dia-log history. We employ GPT-2 as a backbone model andintroduce a two-step training process where the goal ofthe first step is to learn the general structure of the dialogdata and the second step optimizes the response gen-eration as well as intermediate outputs, such as dialogstate and system actions. As opposed to state-of-the-artsystems that are trained to fulfill certain intents in thegiven domains and memorize task-specific conversa-tional patterns, ZS-ToD learns generic task-completionskills by comprehending domain semantics via domainschemas and generalizing to unseen domains seam-lessly. We conduct an extensive experimental evaluationon SGD and SGD-X datasets that span up to 20 uniquedomains and ZS-ToD outperforms state-of-the-art sys-tems on key metrics, with an improvement of +17% onjoint goal accuracy and +5 on inform. Additionally,we present a detailed ablation study to demonstrate theeffectiveness of the proposed components and trainingmechanism.