Gad Allon, Maxime C. Cohen, Wichinpong Park Sinchaisri
{"title":"行为和经济驱动因素对零工经济工作者的影响","authors":"Gad Allon, Maxime C. Cohen, Wichinpong Park Sinchaisri","doi":"10.1287/msom.2023.1191","DOIUrl":null,"url":null,"abstract":"Problem definition: Gig economy companies benefit from labor flexibility by hiring independent workers in response to real-time demand. However, workers’ flexibility in their work schedule poses a great challenge in terms of planning and committing to a service capacity. Understanding what motivates gig economy workers is thus of great importance. In collaboration with a ride-hailing platform, we study how on-demand workers make labor decisions; specifically, whether to work and work duration. Our model revisits competing theories of labor supply regarding the impact of financial incentives and behavioral motives on labor decisions. We are interested in both improving how to predict the behavior of flexible workers and understanding how to design better incentives. Methodology/results: Using a large comprehensive data set, we develop an econometric model to analyze workers’ labor decisions and responses to incentives while accounting for sample selection and endogeneity. We find that financial incentives have a significant positive influence on the decision to work and on the work duration—confirming the positive income elasticity posited by the standard income effect. We also find support for a behavioral theory as workers exhibit income-targeting behavior (working less when reaching an income goal) and inertia (working more after working for a longer period). Managerial implications: We demonstrate via numerical experiments that incentive optimization based on our insights can increase service capacity by 22% without incurring additional cost, or maintain the same capacity at a 30% lower cost. Ignoring behavioral factors could lead to understaffing by 10%–17% below the optimal capacity level. Lastly, our insights inform the design of platform strategy to manage flexible workers amidst an intensified competition among gig platforms. Funding: This study was supported by The Jay H. Baker Retailing Center, The William and Phyllis Mack Institute for Innovation Management, The Wharton Risk Management and Decision Processes Center, and The Fishman-Davidson Center for Service and Operations Management. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.1191 .","PeriodicalId":49901,"journal":{"name":"M&som-Manufacturing & Service Operations Management","volume":"12 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Impact of Behavioral and Economic Drivers on Gig Economy Workers\",\"authors\":\"Gad Allon, Maxime C. Cohen, Wichinpong Park Sinchaisri\",\"doi\":\"10.1287/msom.2023.1191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problem definition: Gig economy companies benefit from labor flexibility by hiring independent workers in response to real-time demand. However, workers’ flexibility in their work schedule poses a great challenge in terms of planning and committing to a service capacity. Understanding what motivates gig economy workers is thus of great importance. In collaboration with a ride-hailing platform, we study how on-demand workers make labor decisions; specifically, whether to work and work duration. Our model revisits competing theories of labor supply regarding the impact of financial incentives and behavioral motives on labor decisions. We are interested in both improving how to predict the behavior of flexible workers and understanding how to design better incentives. Methodology/results: Using a large comprehensive data set, we develop an econometric model to analyze workers’ labor decisions and responses to incentives while accounting for sample selection and endogeneity. We find that financial incentives have a significant positive influence on the decision to work and on the work duration—confirming the positive income elasticity posited by the standard income effect. We also find support for a behavioral theory as workers exhibit income-targeting behavior (working less when reaching an income goal) and inertia (working more after working for a longer period). Managerial implications: We demonstrate via numerical experiments that incentive optimization based on our insights can increase service capacity by 22% without incurring additional cost, or maintain the same capacity at a 30% lower cost. Ignoring behavioral factors could lead to understaffing by 10%–17% below the optimal capacity level. Lastly, our insights inform the design of platform strategy to manage flexible workers amidst an intensified competition among gig platforms. Funding: This study was supported by The Jay H. Baker Retailing Center, The William and Phyllis Mack Institute for Innovation Management, The Wharton Risk Management and Decision Processes Center, and The Fishman-Davidson Center for Service and Operations Management. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.1191 .\",\"PeriodicalId\":49901,\"journal\":{\"name\":\"M&som-Manufacturing & Service Operations Management\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"M&som-Manufacturing & Service Operations Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/msom.2023.1191\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"M&som-Manufacturing & Service Operations Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/msom.2023.1191","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
The Impact of Behavioral and Economic Drivers on Gig Economy Workers
Problem definition: Gig economy companies benefit from labor flexibility by hiring independent workers in response to real-time demand. However, workers’ flexibility in their work schedule poses a great challenge in terms of planning and committing to a service capacity. Understanding what motivates gig economy workers is thus of great importance. In collaboration with a ride-hailing platform, we study how on-demand workers make labor decisions; specifically, whether to work and work duration. Our model revisits competing theories of labor supply regarding the impact of financial incentives and behavioral motives on labor decisions. We are interested in both improving how to predict the behavior of flexible workers and understanding how to design better incentives. Methodology/results: Using a large comprehensive data set, we develop an econometric model to analyze workers’ labor decisions and responses to incentives while accounting for sample selection and endogeneity. We find that financial incentives have a significant positive influence on the decision to work and on the work duration—confirming the positive income elasticity posited by the standard income effect. We also find support for a behavioral theory as workers exhibit income-targeting behavior (working less when reaching an income goal) and inertia (working more after working for a longer period). Managerial implications: We demonstrate via numerical experiments that incentive optimization based on our insights can increase service capacity by 22% without incurring additional cost, or maintain the same capacity at a 30% lower cost. Ignoring behavioral factors could lead to understaffing by 10%–17% below the optimal capacity level. Lastly, our insights inform the design of platform strategy to manage flexible workers amidst an intensified competition among gig platforms. Funding: This study was supported by The Jay H. Baker Retailing Center, The William and Phyllis Mack Institute for Innovation Management, The Wharton Risk Management and Decision Processes Center, and The Fishman-Davidson Center for Service and Operations Management. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.1191 .
期刊介绍:
M&SOM is the INFORMS journal for operations management. The purpose of the journal is to publish high-impact manuscripts that report relevant research on important problems in operations management (OM). The field of OM is the study of the innovative or traditional processes for the design, procurement, production, delivery, and recovery of goods and services. OM research entails the control, planning, design, and improvement of these processes. This research can be prescriptive, descriptive, or predictive; however, the intent of the research is ultimately to develop some form of enduring knowledge that can lead to more efficient or effective processes for the creation and delivery of goods and services.
M&SOM encourages a variety of methodological approaches to OM research; papers may be theoretical or empirical, analytical or computational, and may be based on a range of established research disciplines. M&SOM encourages contributions in OM across the full spectrum of decision making: strategic, tactical, and operational. Furthermore, the journal supports research that examines pertinent issues at the interfaces between OM and other functional areas.