基于IoMT-云计算网络的多模型统一疾病诊断框架

Kamal Upreti, Sheng-Lung Peng, Pravin Ramdas Kshirsagar, Prasun Chakrabarti, Halah A. Al-Alshaikh, A. K. Sharma, Ramesh Chandra Poonia
{"title":"基于IoMT-云计算网络的多模型统一疾病诊断框架","authors":"Kamal Upreti, Sheng-Lung Peng, Pravin Ramdas Kshirsagar, Prasun Chakrabarti, Halah A. Al-Alshaikh, A. K. Sharma, Ramesh Chandra Poonia","doi":"10.47974/jdmsc-1831","DOIUrl":null,"url":null,"abstract":"The past several decades of research into machine learning have been of great assistance to humanity in the diagnosis of a variety of ailments using various forms of automated diagnostic procedures. Machine learning, combined with smart health devices, has improved health monitoring, timely diagnoses, and treatment. This paper introduces a unified disease diagnosis framework, integrating cloud computing, machine learning, and IoT. The framework has three layers: physical (collects patient data), fog (intermediate layer with a domain identification unit to determine input and diagnosis type), and transmission (cloud server with a disease detection unit). The performance evaluation shows the robustness and efficiency of the model as compared to state-of-art models.","PeriodicalId":193977,"journal":{"name":"Journal of Discrete Mathematical Sciences and Cryptography","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-model unified disease diagnosis framework for cyber healthcare using IoMT- cloud computing networks\",\"authors\":\"Kamal Upreti, Sheng-Lung Peng, Pravin Ramdas Kshirsagar, Prasun Chakrabarti, Halah A. Al-Alshaikh, A. K. Sharma, Ramesh Chandra Poonia\",\"doi\":\"10.47974/jdmsc-1831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The past several decades of research into machine learning have been of great assistance to humanity in the diagnosis of a variety of ailments using various forms of automated diagnostic procedures. Machine learning, combined with smart health devices, has improved health monitoring, timely diagnoses, and treatment. This paper introduces a unified disease diagnosis framework, integrating cloud computing, machine learning, and IoT. The framework has three layers: physical (collects patient data), fog (intermediate layer with a domain identification unit to determine input and diagnosis type), and transmission (cloud server with a disease detection unit). The performance evaluation shows the robustness and efficiency of the model as compared to state-of-art models.\",\"PeriodicalId\":193977,\"journal\":{\"name\":\"Journal of Discrete Mathematical Sciences and Cryptography\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Discrete Mathematical Sciences and Cryptography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/jdmsc-1831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Discrete Mathematical Sciences and Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jdmsc-1831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年对机器学习的研究在使用各种形式的自动诊断程序诊断各种疾病方面对人类有很大的帮助。机器学习与智能健康设备相结合,改善了健康监测、及时诊断和治疗。本文介绍了一个集云计算、机器学习和物联网为一体的统一疾病诊断框架。该框架有三层:物理层(收集患者数据)、雾层(带有域识别单元的中间层,用于确定输入和诊断类型)和传输层(带有疾病检测单元的云服务器)。性能评估表明,与现有模型相比,该模型具有鲁棒性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-model unified disease diagnosis framework for cyber healthcare using IoMT- cloud computing networks
The past several decades of research into machine learning have been of great assistance to humanity in the diagnosis of a variety of ailments using various forms of automated diagnostic procedures. Machine learning, combined with smart health devices, has improved health monitoring, timely diagnoses, and treatment. This paper introduces a unified disease diagnosis framework, integrating cloud computing, machine learning, and IoT. The framework has three layers: physical (collects patient data), fog (intermediate layer with a domain identification unit to determine input and diagnosis type), and transmission (cloud server with a disease detection unit). The performance evaluation shows the robustness and efficiency of the model as compared to state-of-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信