锂离子电池实际运行状态预测方法综述

Friedrich von Bülow, Tobias Meisen
{"title":"锂离子电池实际运行状态预测方法综述","authors":"Friedrich von Bülow, Tobias Meisen","doi":"10.1016/j.est.2022.105978","DOIUrl":null,"url":null,"abstract":"The ageing of Lithium-ion batteries can be described as change of state of health (∆SOH). It depends on the battery's operation during charging, discharging, and rest phases. Mapping the operation conditions during these phases for long time windows to a ∆SOH enables forecasting the battery's SOH. With SOH forecasting fleet managers of battery electric vehicle (BEV) fleets can plan vehicle replacement and optimize the fleet's operational strategy. Inspired by the applicability from a user's perspective of fleet managers and battery designers, this work motivates and defines key criteria for SOH forecasting models. The key criteria concern the encoding of information in the model inputs, model transferability to other batteries, and the applicability to 2nd life battery applications. Based on these key criteria we review SOH forecasting models. Currently, only few models satisfy the majority of the defined key criteria, while three others only fail at two key criteria. The majority (71 %) of the methods use machine learning models which can be seen as current research trend due to the complex dependence of battery operational data and battery ageing. We show limitations of the applicability and comparability of existing models due to different data sets, different metrics, different output values, and different forecast horizons. Furthermore, code and data are only rarely shared and publicly available.","PeriodicalId":94331,"journal":{"name":"Journal of energy storage","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A review on methods for state of health forecasting of lithium-ion batteries applicable in real-world operational conditions\",\"authors\":\"Friedrich von Bülow, Tobias Meisen\",\"doi\":\"10.1016/j.est.2022.105978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ageing of Lithium-ion batteries can be described as change of state of health (∆SOH). It depends on the battery's operation during charging, discharging, and rest phases. Mapping the operation conditions during these phases for long time windows to a ∆SOH enables forecasting the battery's SOH. With SOH forecasting fleet managers of battery electric vehicle (BEV) fleets can plan vehicle replacement and optimize the fleet's operational strategy. Inspired by the applicability from a user's perspective of fleet managers and battery designers, this work motivates and defines key criteria for SOH forecasting models. The key criteria concern the encoding of information in the model inputs, model transferability to other batteries, and the applicability to 2nd life battery applications. Based on these key criteria we review SOH forecasting models. Currently, only few models satisfy the majority of the defined key criteria, while three others only fail at two key criteria. The majority (71 %) of the methods use machine learning models which can be seen as current research trend due to the complex dependence of battery operational data and battery ageing. We show limitations of the applicability and comparability of existing models due to different data sets, different metrics, different output values, and different forecast horizons. Furthermore, code and data are only rarely shared and publicly available.\",\"PeriodicalId\":94331,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.est.2022.105978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.est.2022.105978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

锂离子电池的老化可以用健康状态的变化(∆SOH)来描述。这取决于电池在充电、放电和休息阶段的运行情况。将这些阶段长时间窗口内的运行条件映射为∆SOH,可以预测电池的SOH。通过SOH预测,纯电动汽车(BEV)车队管理者可以制定车辆更换计划,优化车队运营策略。从车队经理和电池设计师的用户角度出发,受到适用性的启发,这项工作激励并定义了SOH预测模型的关键标准。关键标准涉及模型输入信息的编码、模型与其他电池的可移植性以及对二次寿命电池应用的适用性。基于这些关键准则,我们对SOH预测模型进行了综述。目前,只有少数模型满足大多数定义的关键标准,而其他三个模型仅在两个关键标准上失败。大多数(71%)的方法使用机器学习模型,由于电池运行数据和电池老化的复杂依赖性,这可以被视为当前的研究趋势。由于不同的数据集、不同的度量、不同的输出值和不同的预测范围,我们显示了现有模型的适用性和可比性的局限性。此外,代码和数据很少被共享和公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on methods for state of health forecasting of lithium-ion batteries applicable in real-world operational conditions
The ageing of Lithium-ion batteries can be described as change of state of health (∆SOH). It depends on the battery's operation during charging, discharging, and rest phases. Mapping the operation conditions during these phases for long time windows to a ∆SOH enables forecasting the battery's SOH. With SOH forecasting fleet managers of battery electric vehicle (BEV) fleets can plan vehicle replacement and optimize the fleet's operational strategy. Inspired by the applicability from a user's perspective of fleet managers and battery designers, this work motivates and defines key criteria for SOH forecasting models. The key criteria concern the encoding of information in the model inputs, model transferability to other batteries, and the applicability to 2nd life battery applications. Based on these key criteria we review SOH forecasting models. Currently, only few models satisfy the majority of the defined key criteria, while three others only fail at two key criteria. The majority (71 %) of the methods use machine learning models which can be seen as current research trend due to the complex dependence of battery operational data and battery ageing. We show limitations of the applicability and comparability of existing models due to different data sets, different metrics, different output values, and different forecast horizons. Furthermore, code and data are only rarely shared and publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信