弱相关重尾创新和随机系数移动平均的部分和和最大值的联合泛函收敛性

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Danijel Krizmanić
{"title":"弱相关重尾创新和随机系数移动平均的部分和和最大值的联合泛函收敛性","authors":"Danijel Krizmanić","doi":"10.30757/alea.v20-46","DOIUrl":null,"url":null,"abstract":"For moving average processes with random coefficients and heavy-tailed innovations that are weakly dependent in the sense of strong mixing and local dependence condition $D'$ we study joint functional convergence of partial sums and maxima. Under the assumption that all partial sums of the series of coefficients are a.s. bounded between zero and the sum of the series we derive a functional limit theorem in the space of $\\mathbb{R}^{2}$-valued c\\`{a}dl\\`{a}g functions on $[0, 1]$ with the Skorokhod weak $M_{2}$ topology.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":"42 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint functional convergence of partial sums and maxima for moving averages with weakly dependent heavy-tailed innovations and random coefficients\",\"authors\":\"Danijel Krizmanić\",\"doi\":\"10.30757/alea.v20-46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For moving average processes with random coefficients and heavy-tailed innovations that are weakly dependent in the sense of strong mixing and local dependence condition $D'$ we study joint functional convergence of partial sums and maxima. Under the assumption that all partial sums of the series of coefficients are a.s. bounded between zero and the sum of the series we derive a functional limit theorem in the space of $\\\\mathbb{R}^{2}$-valued c\\\\`{a}dl\\\\`{a}g functions on $[0, 1]$ with the Skorokhod weak $M_{2}$ topology.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-46\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30757/alea.v20-46","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint functional convergence of partial sums and maxima for moving averages with weakly dependent heavy-tailed innovations and random coefficients
For moving average processes with random coefficients and heavy-tailed innovations that are weakly dependent in the sense of strong mixing and local dependence condition $D'$ we study joint functional convergence of partial sums and maxima. Under the assumption that all partial sums of the series of coefficients are a.s. bounded between zero and the sum of the series we derive a functional limit theorem in the space of $\mathbb{R}^{2}$-valued c\`{a}dl\`{a}g functions on $[0, 1]$ with the Skorokhod weak $M_{2}$ topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信