Banach空间中一类非线性映射的单调变分包含、平衡和不动点问题的逼近解

IF 1 Q1 MATHEMATICS
HAMMED ANUOLUWAPO ABASS, CHINEDU IZUCHUKWU, OLUWATOSIN TEMITOPE MEWOMO
{"title":"Banach空间中一类非线性映射的单调变分包含、平衡和不动点问题的逼近解","authors":"HAMMED ANUOLUWAPO ABASS, CHINEDU IZUCHUKWU, OLUWATOSIN TEMITOPE MEWOMO","doi":"10.46793/kgjmat2305.777a","DOIUrl":null,"url":null,"abstract":"In this paper, motivated by the works of Timnak et al. [Filomat 31(15) (2017), 4673–4693], Ogbuisi and Izuchukwu [Numer. Funct. Anal. 40(13) (2019)] and some other related results in literature, we introduce an iterative algorithm and employ a Bregman distance approach for approximating a zero of the sum of two monotone operators, which is also a common solution of equilibrium problem involving pseudomonotone bifunction and a fixed point problem for an infinite family of Bregman quasi-nonexpansive mappings in the framework of a reflexive Banach space. Using our iterative algorithm, we state and prove a strong convergence result for approximating a common solution of the aforementioned problems. Furthermore, we give some applications of the consequences of our main result to convex minimization problem and variational inequality problem. Lastly, we display a numerical example to show the applicability of our main result. The result presented in this paper extends and complements many related results in the literature.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"13 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating Solutions of Monotone Variational Inclusion, Equilibrium and Fixed Point Problems of Certain Nonlinear Mappings in Banach Spaces\",\"authors\":\"HAMMED ANUOLUWAPO ABASS, CHINEDU IZUCHUKWU, OLUWATOSIN TEMITOPE MEWOMO\",\"doi\":\"10.46793/kgjmat2305.777a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, motivated by the works of Timnak et al. [Filomat 31(15) (2017), 4673–4693], Ogbuisi and Izuchukwu [Numer. Funct. Anal. 40(13) (2019)] and some other related results in literature, we introduce an iterative algorithm and employ a Bregman distance approach for approximating a zero of the sum of two monotone operators, which is also a common solution of equilibrium problem involving pseudomonotone bifunction and a fixed point problem for an infinite family of Bregman quasi-nonexpansive mappings in the framework of a reflexive Banach space. Using our iterative algorithm, we state and prove a strong convergence result for approximating a common solution of the aforementioned problems. Furthermore, we give some applications of the consequences of our main result to convex minimization problem and variational inequality problem. Lastly, we display a numerical example to show the applicability of our main result. The result presented in this paper extends and complements many related results in the literature.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2305.777a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2305.777a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文以Timnak等人[Filomat 31(15)(2017), 4673-4693]、Ogbuisi和Izuchukwu [number . 5]的著作为灵感。功能。[j] [j] . 40(13)(2019)]和文献中的一些相关结果,我们引入了一种迭代算法,并采用Bregman距离方法逼近两个单调算子和的零,这也是涉及伪单调双函数的平衡问题和自反Banach空间框架下无限族Bregman拟非扩张映射的不动点问题的一般解。利用我们的迭代算法,我们陈述并证明了逼近上述问题的一个公共解的强收敛结果。进一步,我们给出了我们的主要结果在凸极小化问题和变分不等式问题上的一些应用。最后,通过数值算例说明了本文主要结果的适用性。本文的结果是对文献中许多相关结果的扩展和补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating Solutions of Monotone Variational Inclusion, Equilibrium and Fixed Point Problems of Certain Nonlinear Mappings in Banach Spaces
In this paper, motivated by the works of Timnak et al. [Filomat 31(15) (2017), 4673–4693], Ogbuisi and Izuchukwu [Numer. Funct. Anal. 40(13) (2019)] and some other related results in literature, we introduce an iterative algorithm and employ a Bregman distance approach for approximating a zero of the sum of two monotone operators, which is also a common solution of equilibrium problem involving pseudomonotone bifunction and a fixed point problem for an infinite family of Bregman quasi-nonexpansive mappings in the framework of a reflexive Banach space. Using our iterative algorithm, we state and prove a strong convergence result for approximating a common solution of the aforementioned problems. Furthermore, we give some applications of the consequences of our main result to convex minimization problem and variational inequality problem. Lastly, we display a numerical example to show the applicability of our main result. The result presented in this paper extends and complements many related results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信