空间-空间-分数阶广义泊松方程的对称性、诺特定理、守恒定律和数值模拟

IF 1 Q1 MATHEMATICS
S. REZA HEJAZI, AZADEH NADERIFARD, SOLEIMAN HOSSEINPOUR, ELHAM DASTRANJ
{"title":"空间-空间-分数阶广义泊松方程的对称性、诺特定理、守恒定律和数值模拟","authors":"S. REZA HEJAZI, AZADEH NADERIFARD, SOLEIMAN HOSSEINPOUR, ELHAM DASTRANJ","doi":"10.46793/kgjmat2305.713h","DOIUrl":null,"url":null,"abstract":"In the present paper Lie theory of differential equations is expanded for finding symmetry geometric vector fields of Poisson equation. Similarity variables extracted from symmetries are applied in order to find reduced forms of the considered equation by using Erdélyi-Kober operator. Conservation laws of the space-space-fractional generalized Poisson equation with the Riemann-Liouville derivative are investigated via Noether’s method. By means of the concept of non-linear self-adjointness, Noether’s operators, formal Lagrangians and conserved vectors are computed. A collocation technique is also applied to give a numerical simulation of the problem.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"7 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries, Noether’s Theorem, Conservation Laws and Numerical Simulation for Space-Space-Fractional Generalized Poisson Equation\",\"authors\":\"S. REZA HEJAZI, AZADEH NADERIFARD, SOLEIMAN HOSSEINPOUR, ELHAM DASTRANJ\",\"doi\":\"10.46793/kgjmat2305.713h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper Lie theory of differential equations is expanded for finding symmetry geometric vector fields of Poisson equation. Similarity variables extracted from symmetries are applied in order to find reduced forms of the considered equation by using Erdélyi-Kober operator. Conservation laws of the space-space-fractional generalized Poisson equation with the Riemann-Liouville derivative are investigated via Noether’s method. By means of the concept of non-linear self-adjointness, Noether’s operators, formal Lagrangians and conserved vectors are computed. A collocation technique is also applied to give a numerical simulation of the problem.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2305.713h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2305.713h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将微分方程的李理论推广到泊松方程的对称几何向量场中。利用erdsamlyi - kober算子,从对称中提取相似变量,求出所考虑方程的约简形式。利用Noether方法研究了具有Riemann-Liouville导数的空间-空间-分数阶广义泊松方程的守恒律。利用非线性自伴随的概念,计算了Noether算子、形式拉格朗日算子和守恒向量。并采用配置技术对该问题进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetries, Noether’s Theorem, Conservation Laws and Numerical Simulation for Space-Space-Fractional Generalized Poisson Equation
In the present paper Lie theory of differential equations is expanded for finding symmetry geometric vector fields of Poisson equation. Similarity variables extracted from symmetries are applied in order to find reduced forms of the considered equation by using Erdélyi-Kober operator. Conservation laws of the space-space-fractional generalized Poisson equation with the Riemann-Liouville derivative are investigated via Noether’s method. By means of the concept of non-linear self-adjointness, Noether’s operators, formal Lagrangians and conserved vectors are computed. A collocation technique is also applied to give a numerical simulation of the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信