有序指数随机漫步

Pub Date : 2023-01-01 DOI:10.30757/alea.v20-45
Denis Denisov, Will FitzGerald
{"title":"有序指数随机漫步","authors":"Denis Denisov, Will FitzGerald","doi":"10.30757/alea.v20-45","DOIUrl":null,"url":null,"abstract":"We study a $d$-dimensional random walk with exponentially distributed increments conditioned so that the components stay ordered (in the sense of Doob). We find explicitly a positive harmonic function $h$ for the killed process and then construct an ordered process using Doob's $h$-transform. Since these random walks are not nearest-neighbour, the harmonic function is not the Vandermonde determinant. The ordered process is related to the departure process of M/M/1 queues in tandem. We find asymptotics for the tail probabilities of the time until the components in exponential random walks become disordered and a local limit theorem. We find the distribution of the processes of smallest and largest particles as Fredholm determinants.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordered exponential random walks\",\"authors\":\"Denis Denisov, Will FitzGerald\",\"doi\":\"10.30757/alea.v20-45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a $d$-dimensional random walk with exponentially distributed increments conditioned so that the components stay ordered (in the sense of Doob). We find explicitly a positive harmonic function $h$ for the killed process and then construct an ordered process using Doob's $h$-transform. Since these random walks are not nearest-neighbour, the harmonic function is not the Vandermonde determinant. The ordered process is related to the departure process of M/M/1 queues in tandem. We find asymptotics for the tail probabilities of the time until the components in exponential random walks become disordered and a local limit theorem. We find the distribution of the processes of smallest and largest particles as Fredholm determinants.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30757/alea.v20-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ordered exponential random walks
We study a $d$-dimensional random walk with exponentially distributed increments conditioned so that the components stay ordered (in the sense of Doob). We find explicitly a positive harmonic function $h$ for the killed process and then construct an ordered process using Doob's $h$-transform. Since these random walks are not nearest-neighbour, the harmonic function is not the Vandermonde determinant. The ordered process is related to the departure process of M/M/1 queues in tandem. We find asymptotics for the tail probabilities of the time until the components in exponential random walks become disordered and a local limit theorem. We find the distribution of the processes of smallest and largest particles as Fredholm determinants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信