基于Waymo数据集的运动预测轨迹预测技术实证分析

Devansh Arora, Parul Arora, Ritika Wason
{"title":"基于Waymo数据集的运动预测轨迹预测技术实证分析","authors":"Devansh Arora, Parul Arora, Ritika Wason","doi":"10.17993/3ctecno.2023.v12n2e44.49-63","DOIUrl":null,"url":null,"abstract":"The Waymo is the prime and most varied autonomous driving dataset that improves and enhances itself every year. Motion Prediction is a considerable challenge in 2023. This manuscript analyses five considerable methods namely MTR-A, Wayformer, DenseTNT, Golfer and MultiPath++ for their technology applied. The analysis revealed that the Transformer network could achieve a state of the art trajectory prediction as well as scale to many workloads.","PeriodicalId":143630,"journal":{"name":"3C Tecnología","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Empirical Analysis of Trajectory Prediction Techniques for Motion Prediction in Waymo Dataset\",\"authors\":\"Devansh Arora, Parul Arora, Ritika Wason\",\"doi\":\"10.17993/3ctecno.2023.v12n2e44.49-63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Waymo is the prime and most varied autonomous driving dataset that improves and enhances itself every year. Motion Prediction is a considerable challenge in 2023. This manuscript analyses five considerable methods namely MTR-A, Wayformer, DenseTNT, Golfer and MultiPath++ for their technology applied. The analysis revealed that the Transformer network could achieve a state of the art trajectory prediction as well as scale to many workloads.\",\"PeriodicalId\":143630,\"journal\":{\"name\":\"3C Tecnología\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C Tecnología\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctecno.2023.v12n2e44.49-63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Tecnología","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2023.v12n2e44.49-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Waymo是最好的、最多样化的自动驾驶数据集,每年都在改进和增强自己。2023年,运动预测是一个相当大的挑战。本文分析了五种重要的方法,即MTR-A, Wayformer, DenseTNT, Golfer和MultiPath++的技术应用。分析表明,Transformer网络可以实现最先进的轨迹预测,并可扩展到许多工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Analysis of Trajectory Prediction Techniques for Motion Prediction in Waymo Dataset
The Waymo is the prime and most varied autonomous driving dataset that improves and enhances itself every year. Motion Prediction is a considerable challenge in 2023. This manuscript analyses five considerable methods namely MTR-A, Wayformer, DenseTNT, Golfer and MultiPath++ for their technology applied. The analysis revealed that the Transformer network could achieve a state of the art trajectory prediction as well as scale to many workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信