有限域算法上的SMT求解

Thomas Hader, Daniela Kaufmann, Laura Kovacs
{"title":"有限域算法上的SMT求解","authors":"Thomas Hader, Daniela Kaufmann, Laura Kovacs","doi":"10.29007/4n6w","DOIUrl":null,"url":null,"abstract":"Non-linear polynomial systems over finite fields are used to model functional behavior of cryptosystems, with applications in system security, computer cryptography, and post- quantum cryptography. Solving polynomial systems is also one of the most difficult problems in mathematics. In this paper, we propose an automated reasoning procedure for deciding the satisfiability of a system of non-linear equations over finite fields. We introduce zero decomposition techniques to prove that polynomial constraints over finite fields yield finite basis explanation functions. We use these explanation functions in model constructing satisfiability solving, allowing us to equip a CDCL-style search procedure with tailored theory reasoning in SMT solving over finite fields. We implemented our approach and provide a novel and effective reasoning prototype for non-linear arithmetic over finite fields.","PeriodicalId":93549,"journal":{"name":"EPiC series in computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMT Solving over Finite Field Arithmetic\",\"authors\":\"Thomas Hader, Daniela Kaufmann, Laura Kovacs\",\"doi\":\"10.29007/4n6w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-linear polynomial systems over finite fields are used to model functional behavior of cryptosystems, with applications in system security, computer cryptography, and post- quantum cryptography. Solving polynomial systems is also one of the most difficult problems in mathematics. In this paper, we propose an automated reasoning procedure for deciding the satisfiability of a system of non-linear equations over finite fields. We introduce zero decomposition techniques to prove that polynomial constraints over finite fields yield finite basis explanation functions. We use these explanation functions in model constructing satisfiability solving, allowing us to equip a CDCL-style search procedure with tailored theory reasoning in SMT solving over finite fields. We implemented our approach and provide a novel and effective reasoning prototype for non-linear arithmetic over finite fields.\",\"PeriodicalId\":93549,\"journal\":{\"name\":\"EPiC series in computing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPiC series in computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/4n6w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC series in computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/4n6w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限域上的非线性多项式系统用于模拟密码系统的功能行为,在系统安全、计算机密码学和后量子密码学中有应用。求解多项式系统也是数学中最困难的问题之一。本文提出了一种判定有限域上非线性方程组可满足性的自动推理方法。我们引入零分解技术来证明有限域上的多项式约束产生有限基解释函数。我们在模型构造可满足性求解中使用这些解释函数,使我们能够在有限域的SMT求解中为cdcl风格的搜索过程配备量身定制的理论推理。我们实现了我们的方法,并为有限域上的非线性算法提供了一个新颖有效的推理原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMT Solving over Finite Field Arithmetic
Non-linear polynomial systems over finite fields are used to model functional behavior of cryptosystems, with applications in system security, computer cryptography, and post- quantum cryptography. Solving polynomial systems is also one of the most difficult problems in mathematics. In this paper, we propose an automated reasoning procedure for deciding the satisfiability of a system of non-linear equations over finite fields. We introduce zero decomposition techniques to prove that polynomial constraints over finite fields yield finite basis explanation functions. We use these explanation functions in model constructing satisfiability solving, allowing us to equip a CDCL-style search procedure with tailored theory reasoning in SMT solving over finite fields. We implemented our approach and provide a novel and effective reasoning prototype for non-linear arithmetic over finite fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信