Heisenberg群上的球面极大算子:受限膨胀集

IF 0.7 3区 数学 Q2 MATHEMATICS
Joris Roos, Andreas Seeger, Rajula Srivastava
{"title":"Heisenberg群上的球面极大算子:受限膨胀集","authors":"Joris Roos, Andreas Seeger, Rajula Srivastava","doi":"10.4064/sm220804-22-6","DOIUrl":null,"url":null,"abstract":"Consider spherical means on the Heisenberg group with a codimension 2 incidence relation, and associated spherical local maximal functions $M_E f$ where the dilations are restricted to a set $E$. We prove $L^p\\to L^q$ estimates for these maximal operators","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":"68 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spherical maximal operators on Heisenberg groups: Restricted dilation sets\",\"authors\":\"Joris Roos, Andreas Seeger, Rajula Srivastava\",\"doi\":\"10.4064/sm220804-22-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider spherical means on the Heisenberg group with a codimension 2 incidence relation, and associated spherical local maximal functions $M_E f$ where the dilations are restricted to a set $E$. We prove $L^p\\\\to L^q$ estimates for these maximal operators\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220804-22-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/sm220804-22-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

考虑具有余维2关联关系的Heisenberg群上的球面均值,以及相关的球面局部极大函数M_E f$,其中膨胀限制在一个集合$E$中。我们证明了这些极大算子的L^p到L^q$估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical maximal operators on Heisenberg groups: Restricted dilation sets
Consider spherical means on the Heisenberg group with a codimension 2 incidence relation, and associated spherical local maximal functions $M_E f$ where the dilations are restricted to a set $E$. We prove $L^p\to L^q$ estimates for these maximal operators
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信