{"title":"Heisenberg群上的球面极大算子:受限膨胀集","authors":"Joris Roos, Andreas Seeger, Rajula Srivastava","doi":"10.4064/sm220804-22-6","DOIUrl":null,"url":null,"abstract":"Consider spherical means on the Heisenberg group with a codimension 2 incidence relation, and associated spherical local maximal functions $M_E f$ where the dilations are restricted to a set $E$. We prove $L^p\\to L^q$ estimates for these maximal operators","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spherical maximal operators on Heisenberg groups: Restricted dilation sets\",\"authors\":\"Joris Roos, Andreas Seeger, Rajula Srivastava\",\"doi\":\"10.4064/sm220804-22-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider spherical means on the Heisenberg group with a codimension 2 incidence relation, and associated spherical local maximal functions $M_E f$ where the dilations are restricted to a set $E$. We prove $L^p\\\\to L^q$ estimates for these maximal operators\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220804-22-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/sm220804-22-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spherical maximal operators on Heisenberg groups: Restricted dilation sets
Consider spherical means on the Heisenberg group with a codimension 2 incidence relation, and associated spherical local maximal functions $M_E f$ where the dilations are restricted to a set $E$. We prove $L^p\to L^q$ estimates for these maximal operators
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.