{"title":"Chern-Simons-Schrödinger方程的刘维尔定理","authors":"Benjamin Dodson","doi":"10.3934/dcds.2023110","DOIUrl":null,"url":null,"abstract":"In this paper we prove a Liouville theorem for the Chern–Simons–Schrödinger equation. This result is consistent with the soliton resolution conjecture for initial data that does not lie in a weighted space. See [10] for the soliton resolution result in a weighted space.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"41 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Liouville theorem for the Chern–Simons–Schrödinger equation\",\"authors\":\"Benjamin Dodson\",\"doi\":\"10.3934/dcds.2023110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove a Liouville theorem for the Chern–Simons–Schrödinger equation. This result is consistent with the soliton resolution conjecture for initial data that does not lie in a weighted space. See [10] for the soliton resolution result in a weighted space.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023110\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023110","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Liouville theorem for the Chern–Simons–Schrödinger equation
In this paper we prove a Liouville theorem for the Chern–Simons–Schrödinger equation. This result is consistent with the soliton resolution conjecture for initial data that does not lie in a weighted space. See [10] for the soliton resolution result in a weighted space.
期刊介绍:
DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.