基于高斯羽流函数的涡流燃烧室守恒标量空间分布的低阶预测

Q4 Mathematics
WU Ziheng, ZHANG Chi, ZHANG Shihong, WANG Bosen
{"title":"基于高斯羽流函数的涡流燃烧室守恒标量空间分布的低阶预测","authors":"WU Ziheng, ZHANG Chi, ZHANG Shihong, WANG Bosen","doi":"10.21656/1000-0887.440119","DOIUrl":null,"url":null,"abstract":"The mixture fraction is a conserved scalar characterizing the fuel-air mixing. As a key reference scalar for turbulent combustion modelling, its spatial distribution is usually obtained through 3D numerical simulation, which are, however, time-consuming and costly for combustors with complex geometries. To overcome such low efficiency in the iterative designing process, a low-order model was developed based on the Gaussian plume function to compute the mixture fraction field in the swirl combustor to accelerate the evaluation of the fuel-air mixing strategy and the parameterized design process. Compared with the conventional formulation, the derived new Gaussian plume function includes the effects of convection and corrections due to swirl flows. A mirror image reflection model was further developed to simulate the wall-plume interactions, together with the relevant corrections to ensure mass conservation. This newly derived Gaussian plume model was applied to the low-older prediction of the mixture fraction field in a methane swirl combustor. Based on the database generated through 3D numerical simulations, the model parameters were optimized with the least square method first. The prediction accuracy under broad working conditions was demonstrated. This study not only provides a novel approach for quick predictions of mixture fractions in swirl combustors, but also sets an instance for further development and application of the Gaussian plume model.","PeriodicalId":8341,"journal":{"name":"应用数学和力学","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function\",\"authors\":\"WU Ziheng, ZHANG Chi, ZHANG Shihong, WANG Bosen\",\"doi\":\"10.21656/1000-0887.440119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mixture fraction is a conserved scalar characterizing the fuel-air mixing. As a key reference scalar for turbulent combustion modelling, its spatial distribution is usually obtained through 3D numerical simulation, which are, however, time-consuming and costly for combustors with complex geometries. To overcome such low efficiency in the iterative designing process, a low-order model was developed based on the Gaussian plume function to compute the mixture fraction field in the swirl combustor to accelerate the evaluation of the fuel-air mixing strategy and the parameterized design process. Compared with the conventional formulation, the derived new Gaussian plume function includes the effects of convection and corrections due to swirl flows. A mirror image reflection model was further developed to simulate the wall-plume interactions, together with the relevant corrections to ensure mass conservation. This newly derived Gaussian plume model was applied to the low-older prediction of the mixture fraction field in a methane swirl combustor. Based on the database generated through 3D numerical simulations, the model parameters were optimized with the least square method first. The prediction accuracy under broad working conditions was demonstrated. This study not only provides a novel approach for quick predictions of mixture fractions in swirl combustors, but also sets an instance for further development and application of the Gaussian plume model.\",\"PeriodicalId\":8341,\"journal\":{\"name\":\"应用数学和力学\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学和力学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21656/1000-0887.440119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学和力学","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21656/1000-0887.440119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

混合分数是表征燃料-空气混合的守恒标量。作为湍流燃烧建模的关键参考标量,其空间分布通常是通过三维数值模拟获得的,但对于形状复杂的燃烧器来说,三维数值模拟耗时且成本高。为了克服迭代设计过程中效率低的问题,建立了基于高斯羽流函数的低阶模型来计算旋流燃烧室的混合分数场,以加快燃料-空气混合策略的评估和参数化设计过程。与传统公式相比,导出的新高斯羽流函数考虑了对流的影响和涡流的修正。进一步建立了镜像反射模型来模拟壁柱相互作用,并进行了相应的修正以确保质量守恒。将新导出的高斯羽流模型应用于甲烷旋流燃烧室混合馏分场的低年龄预测。基于三维数值模拟生成的数据库,首先采用最小二乘法对模型参数进行优化。验证了在广泛工况下的预测精度。该研究不仅为旋涡燃烧室混合馏分的快速预测提供了一种新方法,而且为高斯羽流模型的进一步发展和应用提供了实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function
The mixture fraction is a conserved scalar characterizing the fuel-air mixing. As a key reference scalar for turbulent combustion modelling, its spatial distribution is usually obtained through 3D numerical simulation, which are, however, time-consuming and costly for combustors with complex geometries. To overcome such low efficiency in the iterative designing process, a low-order model was developed based on the Gaussian plume function to compute the mixture fraction field in the swirl combustor to accelerate the evaluation of the fuel-air mixing strategy and the parameterized design process. Compared with the conventional formulation, the derived new Gaussian plume function includes the effects of convection and corrections due to swirl flows. A mirror image reflection model was further developed to simulate the wall-plume interactions, together with the relevant corrections to ensure mass conservation. This newly derived Gaussian plume model was applied to the low-older prediction of the mixture fraction field in a methane swirl combustor. Based on the database generated through 3D numerical simulations, the model parameters were optimized with the least square method first. The prediction accuracy under broad working conditions was demonstrated. This study not only provides a novel approach for quick predictions of mixture fractions in swirl combustors, but also sets an instance for further development and application of the Gaussian plume model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
应用数学和力学
应用数学和力学 Mathematics-Applied Mathematics
CiteScore
1.20
自引率
0.00%
发文量
6042
期刊介绍: Applied Mathematics and Mechanics was founded in 1980 by CHIEN Wei-zang, a celebrated Chinese scientist in mechanics and mathematics. The current editor in chief is Professor LU Tianjian from Nanjing University of Aeronautics and Astronautics. The Journal was a quarterly in the beginning, a bimonthly the next year, and then a monthly ever since 1985. It carries original research papers on mechanics, mathematical methods in mechanics and interdisciplinary mechanics based on artificial intelligence mathematics. It also strengthens attention to mechanical issues in interdisciplinary fields such as mechanics and information networks, system control, life sciences, ecological sciences, new energy, and new materials, making due contributions to promoting the development of new productive forces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信