由正方形和AD族构成的空间的强变形性质

IF 0.6 Q3 MATHEMATICS
William Chen-Mertens, César Corral-Rojas, Paul J. Szeptycki
{"title":"由正方形和AD族构成的空间的强变形性质","authors":"William Chen-Mertens, César Corral-Rojas, Paul J. Szeptycki","doi":"10.4995/agt.2023.18504","DOIUrl":null,"url":null,"abstract":"We answer questions of Arhangel'skiĭ using spaces defined from combinatorial objects. We first establish further convergence properties of a space constructed from □ ( κ ) showing it is Fréchet-Urysohn for finite sets and a w-space that is not a W-space. We also show that under additional assumptions it may be not bi-sequential, and so providing a consistent example of an absolutely Fréchet α1 space that is not bisequential. In addition, if we do not require the space being α1, we can construct a ZFC example of a countable absolutely Fréchet space that is not bisequential from an almost disjoint family of subsets of the natural numbers.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"147 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Fréchet properties of spaces constructed from squares and AD families\",\"authors\":\"William Chen-Mertens, César Corral-Rojas, Paul J. Szeptycki\",\"doi\":\"10.4995/agt.2023.18504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We answer questions of Arhangel'skiĭ using spaces defined from combinatorial objects. We first establish further convergence properties of a space constructed from □ ( κ ) showing it is Fréchet-Urysohn for finite sets and a w-space that is not a W-space. We also show that under additional assumptions it may be not bi-sequential, and so providing a consistent example of an absolutely Fréchet α1 space that is not bisequential. In addition, if we do not require the space being α1, we can construct a ZFC example of a countable absolutely Fréchet space that is not bisequential from an almost disjoint family of subsets of the natural numbers.\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2023.18504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2023.18504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用由组合对象定义的空间来回答Arhangel'ski的问题。我们首先建立了由□(κ)构造的空间的进一步收敛性质,表明它对于有限集和非w空间的w空间是fr切特-尤里松的。我们还表明,在附加的假设下,它可能不是双序的,因此提供了一个绝对fr α1空间不是双等的一致例子。此外,如果我们不要求空间为α1,我们可以从自然数的几乎不相交的子集族中构造一个非等等的可数绝对fr空间的ZFC例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Fréchet properties of spaces constructed from squares and AD families
We answer questions of Arhangel'skiĭ using spaces defined from combinatorial objects. We first establish further convergence properties of a space constructed from □ ( κ ) showing it is Fréchet-Urysohn for finite sets and a w-space that is not a W-space. We also show that under additional assumptions it may be not bi-sequential, and so providing a consistent example of an absolutely Fréchet α1 space that is not bisequential. In addition, if we do not require the space being α1, we can construct a ZFC example of a countable absolutely Fréchet space that is not bisequential from an almost disjoint family of subsets of the natural numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信