{"title":"具有非定形二元关系的Menger概率度量空间中集值映射的不动点","authors":"Gopi Prasad, Sheetal Deshwal, Rupesh K. Srivastav","doi":"10.4995/agt.2023.18993","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the existence of fixed point results for set-valued mappings in Menger probabilistic metric spaces equipped with an amorphous binary relation and a Hadžić -type t-norm. For the usability of such findings we present a Kelisky-Rivlin type result for a class of Bernstein type special operators introduced by Deo et. al. [Appl. Math. Comput. 201, (2008), 604-612 ] on the space C([ 0, n/n+1]). In this way, these investigations extend, modify and generalize some prominent recent fixed point results of the existing literature.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"14 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation\",\"authors\":\"Gopi Prasad, Sheetal Deshwal, Rupesh K. Srivastav\",\"doi\":\"10.4995/agt.2023.18993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the existence of fixed point results for set-valued mappings in Menger probabilistic metric spaces equipped with an amorphous binary relation and a Hadžić -type t-norm. For the usability of such findings we present a Kelisky-Rivlin type result for a class of Bernstein type special operators introduced by Deo et. al. [Appl. Math. Comput. 201, (2008), 604-612 ] on the space C([ 0, n/n+1]). In this way, these investigations extend, modify and generalize some prominent recent fixed point results of the existing literature.\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2023.18993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2023.18993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation
In this paper, we prove the existence of fixed point results for set-valued mappings in Menger probabilistic metric spaces equipped with an amorphous binary relation and a Hadžić -type t-norm. For the usability of such findings we present a Kelisky-Rivlin type result for a class of Bernstein type special operators introduced by Deo et. al. [Appl. Math. Comput. 201, (2008), 604-612 ] on the space C([ 0, n/n+1]). In this way, these investigations extend, modify and generalize some prominent recent fixed point results of the existing literature.
期刊介绍:
The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.