墨西哥高原木兰栎(Quercus magnoliifolia)和松皮栎(Quercus resinosa)(壳斗科)的远距离传播驱动遗传变异和历史人口统计学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ana Albarrán-Lara, Maried Ochoa-Zavala, Andres Torres-Miranda, Ivan M. De-la-Cruz, Patricia Dávila-Aranda, Juan M. Peñaloza-Ramírez, Hernando Rodríguez-Correa, Ken Oyama
{"title":"墨西哥高原木兰栎(Quercus magnoliifolia)和松皮栎(Quercus resinosa)(壳斗科)的远距离传播驱动遗传变异和历史人口统计学","authors":"Ana Albarrán-Lara, Maried Ochoa-Zavala, Andres Torres-Miranda, Ivan M. De-la-Cruz, Patricia Dávila-Aranda, Juan M. Peñaloza-Ramírez, Hernando Rodríguez-Correa, Ken Oyama","doi":"10.1007/s11295-023-01619-5","DOIUrl":null,"url":null,"abstract":"Abstract While hybridization and introgression can have a strong adaptive importance, it can impede divergence of species. Quercus magnoliifolia and Q. resinosa are two endemic oak species distributed across the Mexican highlands. These species diverged ecological and morphologically; however, no nuclear genetic differentiation is evident. In this study, we determined the mechanisms that shape patterns of genetic variation and establish the role of migration and hybridization in the evolutionary history of these two oak species. To do this, Bayesian approaches were used for inference on migration rates and directionality and timing of divergence between species using chloroplast microsatellites. We then integrated species distribution models to infer the geographic distribution of Q. magnoliifolia and Q. resinosa during Last Interglacial, Last Glacial Maximum, and Mid-Holocene time frames. We failed in distinguishing a unique genetic composition for each species. Chloroplast differentiation was more congruent with geography than the taxonomic status of each species. Our study revealed that after the divergence ( c . 10 Mya) of these two oak species, high rates of introgression took place at the end of the Pleistocene. Furthermore, past distribution models predicted that Q. magnoliifolia and Q. resinosa have likely been in sympatry presumable since Last Glacial Maximum and Q. resinosa probably expanded geographically towards its current distribution around Mid-Holocene. This expansion was supported by testing migration models, suggesting recent establishment of Q. resinosa to the north of Trans-Mexican Volcanic Belt. We hypothesized that after Q. magnoliifolia and Q. resinosa diverged, colonization events followed by hybridization between oaks and long-distance seed dispersal occurred, explaining the present-day patterns of distribution of chloroplast diversity. We propose that divergence of species remains mainly on loci under natural selection, providing evidence on the “porous” nature of species boundaries among oaks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-distance dispersal drives the genetic variation and historical demography of Quercus magnoliifolia and Quercus resinosa (Fagaceae) in the Mexican highlands\",\"authors\":\"Ana Albarrán-Lara, Maried Ochoa-Zavala, Andres Torres-Miranda, Ivan M. De-la-Cruz, Patricia Dávila-Aranda, Juan M. Peñaloza-Ramírez, Hernando Rodríguez-Correa, Ken Oyama\",\"doi\":\"10.1007/s11295-023-01619-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract While hybridization and introgression can have a strong adaptive importance, it can impede divergence of species. Quercus magnoliifolia and Q. resinosa are two endemic oak species distributed across the Mexican highlands. These species diverged ecological and morphologically; however, no nuclear genetic differentiation is evident. In this study, we determined the mechanisms that shape patterns of genetic variation and establish the role of migration and hybridization in the evolutionary history of these two oak species. To do this, Bayesian approaches were used for inference on migration rates and directionality and timing of divergence between species using chloroplast microsatellites. We then integrated species distribution models to infer the geographic distribution of Q. magnoliifolia and Q. resinosa during Last Interglacial, Last Glacial Maximum, and Mid-Holocene time frames. We failed in distinguishing a unique genetic composition for each species. Chloroplast differentiation was more congruent with geography than the taxonomic status of each species. Our study revealed that after the divergence ( c . 10 Mya) of these two oak species, high rates of introgression took place at the end of the Pleistocene. Furthermore, past distribution models predicted that Q. magnoliifolia and Q. resinosa have likely been in sympatry presumable since Last Glacial Maximum and Q. resinosa probably expanded geographically towards its current distribution around Mid-Holocene. This expansion was supported by testing migration models, suggesting recent establishment of Q. resinosa to the north of Trans-Mexican Volcanic Belt. We hypothesized that after Q. magnoliifolia and Q. resinosa diverged, colonization events followed by hybridization between oaks and long-distance seed dispersal occurred, explaining the present-day patterns of distribution of chloroplast diversity. We propose that divergence of species remains mainly on loci under natural selection, providing evidence on the “porous” nature of species boundaries among oaks.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11295-023-01619-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11295-023-01619-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

杂交和渐渗虽然具有很强的适应性,但也会阻碍物种的分化。厚朴栎(Quercus magnoliifolia)和松脂栎(querus resinosa)是分布在墨西哥高地的两种特有橡树。这些物种在生态和形态上分化;然而,没有明显的核遗传分化。在这项研究中,我们确定了遗传变异模式的形成机制,并确定了迁移和杂交在这两种橡树的进化史中的作用。为了做到这一点,贝叶斯方法被用于利用叶绿体微卫星推断物种之间的迁移率、方向性和分化时间。综合物种分布模型,推测了末次间冰期、末次盛冰期和全新世中期木兰和松柏的地理分布。我们没能区分出每个物种独特的基因组成。叶绿体分化更符合地理特征,而不是各物种的分类地位。我们的研究表明,在散度(c。这两种橡树的高渗率发生在更新世末期。此外,过去的分布模式预测厚朴与松脂可能在末次盛冰期以来处于同生状态,松脂可能在中全新世前后在地理上向现在的分布方向扩展。这种扩张得到了迁移模型测试的支持,表明最近在跨墨西哥火山带北部建立了Q. resinosa。我们假设厚朴和松柏分化后,发生了定植事件,随后发生了栎树之间的杂交和长距离种子传播,从而解释了现在的叶绿体多样性分布模式。我们认为,在自然选择的作用下,物种的分化主要集中在位点上,这为橡树物种边界的“多孔性”提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long-distance dispersal drives the genetic variation and historical demography of Quercus magnoliifolia and Quercus resinosa (Fagaceae) in the Mexican highlands

Long-distance dispersal drives the genetic variation and historical demography of Quercus magnoliifolia and Quercus resinosa (Fagaceae) in the Mexican highlands
Abstract While hybridization and introgression can have a strong adaptive importance, it can impede divergence of species. Quercus magnoliifolia and Q. resinosa are two endemic oak species distributed across the Mexican highlands. These species diverged ecological and morphologically; however, no nuclear genetic differentiation is evident. In this study, we determined the mechanisms that shape patterns of genetic variation and establish the role of migration and hybridization in the evolutionary history of these two oak species. To do this, Bayesian approaches were used for inference on migration rates and directionality and timing of divergence between species using chloroplast microsatellites. We then integrated species distribution models to infer the geographic distribution of Q. magnoliifolia and Q. resinosa during Last Interglacial, Last Glacial Maximum, and Mid-Holocene time frames. We failed in distinguishing a unique genetic composition for each species. Chloroplast differentiation was more congruent with geography than the taxonomic status of each species. Our study revealed that after the divergence ( c . 10 Mya) of these two oak species, high rates of introgression took place at the end of the Pleistocene. Furthermore, past distribution models predicted that Q. magnoliifolia and Q. resinosa have likely been in sympatry presumable since Last Glacial Maximum and Q. resinosa probably expanded geographically towards its current distribution around Mid-Holocene. This expansion was supported by testing migration models, suggesting recent establishment of Q. resinosa to the north of Trans-Mexican Volcanic Belt. We hypothesized that after Q. magnoliifolia and Q. resinosa diverged, colonization events followed by hybridization between oaks and long-distance seed dispersal occurred, explaining the present-day patterns of distribution of chloroplast diversity. We propose that divergence of species remains mainly on loci under natural selection, providing evidence on the “porous” nature of species boundaries among oaks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信