机器人焊接中焊缝重构与轨迹生成分类算法

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
David Curiel, Fernando Veiga, Alfredo Suárez, Pedro Villanueva, Eider Aldalur
{"title":"机器人焊接中焊缝重构与轨迹生成分类算法","authors":"David Curiel, Fernando Veiga, Alfredo Suárez, Pedro Villanueva, Eider Aldalur","doi":"10.4028/p-2m9sqo","DOIUrl":null,"url":null,"abstract":"Automation of welding with robotic arms has become an inevitable trend in modern manufacturing technologies. This process can be automated by using a \"click and go\" in which the robot will weld a line where the spot is described or by using an in-line tracking algorithm in which the robot will choose the spot where to weld the line in each layer. This paper presents a simple methodology for the reconstruction of the weld joint and the classification of the joint geometry to serve as a first step to the automatic determination of the robot trajectory. The weld joint has been reconstructed using a laser profilometer placed as a tool on the robot. Spurious data has been removed by signal processing. The joint has been reconstructed three-dimensionally. The classification of the joint profiles was generated using an algorithm based on signal processing and artificial intelligence. This algorithm has been tested for the classification of V-joints (bevel-bevel) and single bevel joints.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weld Joint Reconstruction and Classification Algorithm for Trajectory Generation in Robotic Welding\",\"authors\":\"David Curiel, Fernando Veiga, Alfredo Suárez, Pedro Villanueva, Eider Aldalur\",\"doi\":\"10.4028/p-2m9sqo\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automation of welding with robotic arms has become an inevitable trend in modern manufacturing technologies. This process can be automated by using a \\\"click and go\\\" in which the robot will weld a line where the spot is described or by using an in-line tracking algorithm in which the robot will choose the spot where to weld the line in each layer. This paper presents a simple methodology for the reconstruction of the weld joint and the classification of the joint geometry to serve as a first step to the automatic determination of the robot trajectory. The weld joint has been reconstructed using a laser profilometer placed as a tool on the robot. Spurious data has been removed by signal processing. The joint has been reconstructed three-dimensionally. The classification of the joint profiles was generated using an algorithm based on signal processing and artificial intelligence. This algorithm has been tested for the classification of V-joints (bevel-bevel) and single bevel joints.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-2m9sqo\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-2m9sqo","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机械臂焊接自动化已成为现代制造技术发展的必然趋势。这一过程可以通过使用“点击并走”来实现自动化,机器人将在描述的地点焊接一条线,或者通过使用在线跟踪算法,机器人将在每层中选择焊接线的地点。本文提出了一种简单的方法,用于焊缝的重建和关节几何形状的分类,作为自动确定机器人轨迹的第一步。利用放置在机器人上的激光轮廓仪对焊缝进行了重建。通过信号处理去除了杂散数据。该关节已被三维重建。采用基于信号处理和人工智能的算法对关节剖面进行分类。该算法已被用于v形接头(斜面-斜面)和单斜面接头的分类测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weld Joint Reconstruction and Classification Algorithm for Trajectory Generation in Robotic Welding
Automation of welding with robotic arms has become an inevitable trend in modern manufacturing technologies. This process can be automated by using a "click and go" in which the robot will weld a line where the spot is described or by using an in-line tracking algorithm in which the robot will choose the spot where to weld the line in each layer. This paper presents a simple methodology for the reconstruction of the weld joint and the classification of the joint geometry to serve as a first step to the automatic determination of the robot trajectory. The weld joint has been reconstructed using a laser profilometer placed as a tool on the robot. Spurious data has been removed by signal processing. The joint has been reconstructed three-dimensionally. The classification of the joint profiles was generated using an algorithm based on signal processing and artificial intelligence. This algorithm has been tested for the classification of V-joints (bevel-bevel) and single bevel joints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信