Francisco Javier Trujillo Vilches, Manuel Herrera Fernández, Carolina Bermudo Gamboa, Lorenzo Sevilla Hurtado
{"title":"1877年布朗和夏普万能磨床的虚拟建模","authors":"Francisco Javier Trujillo Vilches, Manuel Herrera Fernández, Carolina Bermudo Gamboa, Lorenzo Sevilla Hurtado","doi":"10.4028/p-kexm3g","DOIUrl":null,"url":null,"abstract":"The grinding processes of shaping materials are one of the oldest known. However, the first grinding machine tool did not appear until the beginning of the 19 th century. Industries as important as the automobile would not have been possible without its invention. One of the machine tools that made this development possible was the universal grinding machine patented by Joseph R. Brown in 1877. Unfortunately, none of these early machine tools have been preserved and only the patent remains. Therefore, in this work, a virtual model of this first universal grinding machine has been developed by applying reverse engineering techniques. For this purpose, the existing data in the patent and in some machine treatises of that time have been used. Based on this information, the functionality of each of its components have been interpreted and analyzed. Starting from a set of hypotheses, a scaled and parameterized functional 3D model has been developed. Additionally, a kinematic study of the grinding wheel drive system has been carried out. Hence, this digital model ensures the durability of an important piece of the universal industrial heritage. Furthermore, it can be used as a teaching tool for engineering students, showing the operation of a machine tool belonging to a historical context different from the current one, which does not differ substantially in its architecture of modern universal grinding machines.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Modeling of the Brown and Sharpe’s Universal Grinding Machine from 1877\",\"authors\":\"Francisco Javier Trujillo Vilches, Manuel Herrera Fernández, Carolina Bermudo Gamboa, Lorenzo Sevilla Hurtado\",\"doi\":\"10.4028/p-kexm3g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The grinding processes of shaping materials are one of the oldest known. However, the first grinding machine tool did not appear until the beginning of the 19 th century. Industries as important as the automobile would not have been possible without its invention. One of the machine tools that made this development possible was the universal grinding machine patented by Joseph R. Brown in 1877. Unfortunately, none of these early machine tools have been preserved and only the patent remains. Therefore, in this work, a virtual model of this first universal grinding machine has been developed by applying reverse engineering techniques. For this purpose, the existing data in the patent and in some machine treatises of that time have been used. Based on this information, the functionality of each of its components have been interpreted and analyzed. Starting from a set of hypotheses, a scaled and parameterized functional 3D model has been developed. Additionally, a kinematic study of the grinding wheel drive system has been carried out. Hence, this digital model ensures the durability of an important piece of the universal industrial heritage. Furthermore, it can be used as a teaching tool for engineering students, showing the operation of a machine tool belonging to a historical context different from the current one, which does not differ substantially in its architecture of modern universal grinding machines.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-kexm3g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-kexm3g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Virtual Modeling of the Brown and Sharpe’s Universal Grinding Machine from 1877
The grinding processes of shaping materials are one of the oldest known. However, the first grinding machine tool did not appear until the beginning of the 19 th century. Industries as important as the automobile would not have been possible without its invention. One of the machine tools that made this development possible was the universal grinding machine patented by Joseph R. Brown in 1877. Unfortunately, none of these early machine tools have been preserved and only the patent remains. Therefore, in this work, a virtual model of this first universal grinding machine has been developed by applying reverse engineering techniques. For this purpose, the existing data in the patent and in some machine treatises of that time have been used. Based on this information, the functionality of each of its components have been interpreted and analyzed. Starting from a set of hypotheses, a scaled and parameterized functional 3D model has been developed. Additionally, a kinematic study of the grinding wheel drive system has been carried out. Hence, this digital model ensures the durability of an important piece of the universal industrial heritage. Furthermore, it can be used as a teaching tool for engineering students, showing the operation of a machine tool belonging to a historical context different from the current one, which does not differ substantially in its architecture of modern universal grinding machines.