小而多样的SEM图像数据集:图像增强对AlexNet性能的影响

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Khairul Khaizi Mohd Shariff, Megat Syahirul Amin Megat Ali, Ahmad Ihsan Mohd Yassin, Noor Ezan Abdullah, Ali Abd Al-Misreb, Aisyah Hartini Jahidin
{"title":"小而多样的SEM图像数据集:图像增强对AlexNet性能的影响","authors":"Khairul Khaizi Mohd Shariff, Megat Syahirul Amin Megat Ali, Ahmad Ihsan Mohd Yassin, Noor Ezan Abdullah, Ali Abd Al-Misreb, Aisyah Hartini Jahidin","doi":"10.18421/tem122-34","DOIUrl":null,"url":null,"abstract":"To this date, scanning electron microscope has produced among the most complex and diverse images at nanoscale resolution. The highly magnified images of backscattered electrons reflected from the surface of samples are non-uniformed, even for the same class of images. The study investigates the impact of having a small but diverse dataset on the performance of AlexNet. A total of 160 samples from EUDAT Collaborative Database Infrastructure is used for the study. Compared to the use of new non-augmented samples to increase the size of dataset, image augmentation has been significantly improved classification performance and generalization ability of the AlexNet.","PeriodicalId":45439,"journal":{"name":"TEM Journal-Technology Education Management Informatics","volume":"7 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small but Diverse SEM Image Dataset: Impact of Image Augmentation on the Performance of AlexNet\",\"authors\":\"Khairul Khaizi Mohd Shariff, Megat Syahirul Amin Megat Ali, Ahmad Ihsan Mohd Yassin, Noor Ezan Abdullah, Ali Abd Al-Misreb, Aisyah Hartini Jahidin\",\"doi\":\"10.18421/tem122-34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To this date, scanning electron microscope has produced among the most complex and diverse images at nanoscale resolution. The highly magnified images of backscattered electrons reflected from the surface of samples are non-uniformed, even for the same class of images. The study investigates the impact of having a small but diverse dataset on the performance of AlexNet. A total of 160 samples from EUDAT Collaborative Database Infrastructure is used for the study. Compared to the use of new non-augmented samples to increase the size of dataset, image augmentation has been significantly improved classification performance and generalization ability of the AlexNet.\",\"PeriodicalId\":45439,\"journal\":{\"name\":\"TEM Journal-Technology Education Management Informatics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEM Journal-Technology Education Management Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18421/tem122-34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal-Technology Education Management Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem122-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

到目前为止,扫描电子显微镜已经产生了纳米级分辨率的最复杂和最多样化的图像之一。从样品表面反射的高度放大后的背散射电子图像是不均匀的,即使对于同一类图像也是如此。该研究调查了拥有一个小而多样的数据集对AlexNet性能的影响。本研究共使用了来自EUDAT协作数据库基础设施的160个样本。与使用新的非增强样本来增加数据集的大小相比,图像增强显著提高了AlexNet的分类性能和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small but Diverse SEM Image Dataset: Impact of Image Augmentation on the Performance of AlexNet
To this date, scanning electron microscope has produced among the most complex and diverse images at nanoscale resolution. The highly magnified images of backscattered electrons reflected from the surface of samples are non-uniformed, even for the same class of images. The study investigates the impact of having a small but diverse dataset on the performance of AlexNet. A total of 160 samples from EUDAT Collaborative Database Infrastructure is used for the study. Compared to the use of new non-augmented samples to increase the size of dataset, image augmentation has been significantly improved classification performance and generalization ability of the AlexNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEM Journal-Technology Education Management Informatics
TEM Journal-Technology Education Management Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
14.30%
发文量
176
审稿时长
8 weeks
期刊介绍: TEM JOURNAL - Technology, Education, Management, Informatics Is a an Open Access, Double-blind peer reviewed journal that publishes articles of interdisciplinary sciences: • Technology, • Computer and informatics sciences, • Education, • Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信